Rodrigo M. Barros, Cínthia C. Bonatto, Marcelo H. S. Ramada, Luciano P. Silva
{"title":"Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Latent Fingermarks Using Greenly Synthesized Silver Nanoparticles","authors":"Rodrigo M. Barros, Cínthia C. Bonatto, Marcelo H. S. Ramada, Luciano P. Silva","doi":"10.3390/surfaces6040024","DOIUrl":null,"url":null,"abstract":"Advances in nanotechnology have contributed to many innovative approaches in the forensic sciences, including the development of new techniques and protocols for latent fingermark detection. Among other nanomaterials, metal-based nanoparticles have been explored as suitable developers for fingermarks present on surfaces that challenge traditionally established methods. The present study explored, for the first time in the forensic science literature, the application of greenly synthesized silver nanoparticles (AgNPs) for latent fingermark surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) analysis. A leaf extract of a native plant from the Cerrado biome was used for green synthesis of the AgNPs, and their hydrodynamic diameter, polydispersity index (PdI), and Zeta potential values were evaluated. Latent fingermarks were produced by three distinct donors and treated with α-CHCA matrix or AgNP suspension and were further investigated using commercial matrix assisted laser desorption/ionization (MALDI)-TOF MS equipment in the m/z range of 100–1000. Characterization results of the AgNPs indicated an average hydrodynamic diameter of 25.94 ± 0.30 nm, a PdI of 0.659 ± 0.085, and a Zeta potential of −33.4 ± 2.6 mV. The silver ions detected showed a relative intensity at least 20× higher for greenly synthesized AgNPs than for AgNO3 suspension, which may be advantageous for the detection of molecular species, especially olefins, present in forensic traces. The AgNP-based SALDI MS approach for the analysis of latent fingermarks showed intense ions at m/z 106.9, 215.8, and 322.7, referring to silver cation species that have been reported as important internal calibrants. The detection of components from endogenous and exogenous sources in latent fingermarks was achieved using the present approach. Greenly synthesized AgNPs may offer a new cost-effective, eco-friendly, and easily scaled up method for application in the chemical analysis of fingermarks.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces6040024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in nanotechnology have contributed to many innovative approaches in the forensic sciences, including the development of new techniques and protocols for latent fingermark detection. Among other nanomaterials, metal-based nanoparticles have been explored as suitable developers for fingermarks present on surfaces that challenge traditionally established methods. The present study explored, for the first time in the forensic science literature, the application of greenly synthesized silver nanoparticles (AgNPs) for latent fingermark surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) analysis. A leaf extract of a native plant from the Cerrado biome was used for green synthesis of the AgNPs, and their hydrodynamic diameter, polydispersity index (PdI), and Zeta potential values were evaluated. Latent fingermarks were produced by three distinct donors and treated with α-CHCA matrix or AgNP suspension and were further investigated using commercial matrix assisted laser desorption/ionization (MALDI)-TOF MS equipment in the m/z range of 100–1000. Characterization results of the AgNPs indicated an average hydrodynamic diameter of 25.94 ± 0.30 nm, a PdI of 0.659 ± 0.085, and a Zeta potential of −33.4 ± 2.6 mV. The silver ions detected showed a relative intensity at least 20× higher for greenly synthesized AgNPs than for AgNO3 suspension, which may be advantageous for the detection of molecular species, especially olefins, present in forensic traces. The AgNP-based SALDI MS approach for the analysis of latent fingermarks showed intense ions at m/z 106.9, 215.8, and 322.7, referring to silver cation species that have been reported as important internal calibrants. The detection of components from endogenous and exogenous sources in latent fingermarks was achieved using the present approach. Greenly synthesized AgNPs may offer a new cost-effective, eco-friendly, and easily scaled up method for application in the chemical analysis of fingermarks.