Robust topology optimization of truss-like continuum structures under uncertain loads based on cloud model

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinze Guo, Kemin Zhou, Shunyi Shi
{"title":"Robust topology optimization of truss-like continuum structures under uncertain loads based on cloud model","authors":"Xinze Guo, Kemin Zhou, Shunyi Shi","doi":"10.1177/10812865231196512","DOIUrl":null,"url":null,"abstract":"The traditional structural performance may be seriously degraded due to applied indeterministic cases. A novel framework for robust topology optimization of truss-like continuum considering uncertain loads is presented. The robust optimization formula is constructed as minimizing the weighted sum of expectancy and standard variance of structural compliance with volume constraints. In this framework, both the magnitude and direction of applied loads are uncertain and independent. Truss-like continuum provides the topology optimal structure theoretically. Based on the classic truss-like optimization method, the statistical moments of compliance are accurately evaluated utilizing a bivariate cloud model tool. An effective strategy based on linear decoupling is reported to largely reduce the total number of finite element analysis. The optimization is achieved with gradient-based mathematic programming. Several numerical examples demonstrate a better structural robust performance obtained by the proposed algorithm than the traditional one.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"58 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231196512","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional structural performance may be seriously degraded due to applied indeterministic cases. A novel framework for robust topology optimization of truss-like continuum considering uncertain loads is presented. The robust optimization formula is constructed as minimizing the weighted sum of expectancy and standard variance of structural compliance with volume constraints. In this framework, both the magnitude and direction of applied loads are uncertain and independent. Truss-like continuum provides the topology optimal structure theoretically. Based on the classic truss-like optimization method, the statistical moments of compliance are accurately evaluated utilizing a bivariate cloud model tool. An effective strategy based on linear decoupling is reported to largely reduce the total number of finite element analysis. The optimization is achieved with gradient-based mathematic programming. Several numerical examples demonstrate a better structural robust performance obtained by the proposed algorithm than the traditional one.
基于云模型的不确定荷载下类桁架连续体结构鲁棒拓扑优化
由于应用的不确定性情况,传统结构的性能可能会严重下降。提出了一种考虑不确定载荷的类桁架连续体鲁棒拓扑优化框架。以体积约束下结构顺应性的期望和标准差的加权和最小化为鲁棒优化公式。在这种框架下,所施加载荷的大小和方向都是不确定和独立的。类桁架连续体在理论上提供了拓扑最优结构。在经典的类桁架优化方法的基础上,利用二元云模型工具准确地评估了柔度统计矩。提出了一种基于线性解耦的有效策略,可以大大减少有限元分析的总次数。采用基于梯度的数学规划方法进行优化。数值算例表明,该算法比传统算法具有更好的结构鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信