Francesco Soranna, Patrick S. Heaney, Martin K. Sekula, David J. Piatak, James M. Ramey
{"title":"Space Launch System Unsteady Forces Developed from Unsteady-Pressure-Sensitive-Paint–Based Corcos Model Parameters","authors":"Francesco Soranna, Patrick S. Heaney, Martin K. Sekula, David J. Piatak, James M. Ramey","doi":"10.2514/1.a35670","DOIUrl":null,"url":null,"abstract":"During atmospheric ascent, launch vehicles (LVs) experience large dynamic loads at transonic conditions where aerodynamic buffet is most critical. To estimate buffet loads, coupled loads analyses typically utilize suitable forcing functions, called buffet forcing functions (BFFs). One of the key buffet environment contributors is the turbulent boundary layer (TBL) acting on the LV outer skin. The cross-spectral density function of TBL-induced fluctuating pressures can be estimated using the widely accepted Corcos model. In the context of transonic buffet, the performance of this model is not well established, partly because of lack of data. To fill this gap, NASA recently acquired extremely high-spatial-density data for the Space Launch System vehicle using the unsteady-pressure-sensitive-paint (uPSP) optical measurement technique. A methodology is developed for extraction of the Corcos model parameters using these unique data, with a focus on the LV design application. The model hypotheses are verified, and the model parameters are empirically tuned. For selected panels on the vehicle, force coherence factors are derived based on the Corcos model, and the associated panel BFFs are compared to uPSP data. It is shown that the modeled BFFs are in agreement with direct integration of uPSP data, except for regions where pressure fluctuations are spatially nonuniform. In those regions, the Corcos-based BFFs exhibit inherent limitations of BFF estimation methods that rely on discrete pressure measurements. Lastly, extending the present implementation of the Corcos model to frequencies impacted by vortex-shedding phenomena can result in underconservative BFF estimates at the subharmonic of the vortex shedding.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"57 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35670","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
During atmospheric ascent, launch vehicles (LVs) experience large dynamic loads at transonic conditions where aerodynamic buffet is most critical. To estimate buffet loads, coupled loads analyses typically utilize suitable forcing functions, called buffet forcing functions (BFFs). One of the key buffet environment contributors is the turbulent boundary layer (TBL) acting on the LV outer skin. The cross-spectral density function of TBL-induced fluctuating pressures can be estimated using the widely accepted Corcos model. In the context of transonic buffet, the performance of this model is not well established, partly because of lack of data. To fill this gap, NASA recently acquired extremely high-spatial-density data for the Space Launch System vehicle using the unsteady-pressure-sensitive-paint (uPSP) optical measurement technique. A methodology is developed for extraction of the Corcos model parameters using these unique data, with a focus on the LV design application. The model hypotheses are verified, and the model parameters are empirically tuned. For selected panels on the vehicle, force coherence factors are derived based on the Corcos model, and the associated panel BFFs are compared to uPSP data. It is shown that the modeled BFFs are in agreement with direct integration of uPSP data, except for regions where pressure fluctuations are spatially nonuniform. In those regions, the Corcos-based BFFs exhibit inherent limitations of BFF estimation methods that rely on discrete pressure measurements. Lastly, extending the present implementation of the Corcos model to frequencies impacted by vortex-shedding phenomena can result in underconservative BFF estimates at the subharmonic of the vortex shedding.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.