Stephen A. Rizzi, Stefan J. Letica, D. Douglas Boyd, Leonard V. Lopes
{"title":"Prediction of Noise-Power-Distance Data for Urban Air Mobility Vehicles","authors":"Stephen A. Rizzi, Stefan J. Letica, D. Douglas Boyd, Leonard V. Lopes","doi":"10.2514/1.c037435","DOIUrl":null,"url":null,"abstract":"In contrast to most commercial air traffic today, vehicles serving the urban air mobility (UAM) market are anticipated to operate within communities and be close to the public at large. The approved model for assessing environmental impact of air traffic actions in the United States, the Federal Aviation Administration Aviation Environmental Design Tool (AEDT), does not directly support analysis of such operations due to a combined lack of UAM aircraft flight performance model data and aircraft noise data. This paper addresses the latter by offering two prediction-based approaches for generation of noise–power–distance data for use within AEDT. One utilizes the AEDT fixed-wing aircraft modeling approach, and the other utilizes the AEDT rotary-wing aircraft modeling approach.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"1 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037435","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to most commercial air traffic today, vehicles serving the urban air mobility (UAM) market are anticipated to operate within communities and be close to the public at large. The approved model for assessing environmental impact of air traffic actions in the United States, the Federal Aviation Administration Aviation Environmental Design Tool (AEDT), does not directly support analysis of such operations due to a combined lack of UAM aircraft flight performance model data and aircraft noise data. This paper addresses the latter by offering two prediction-based approaches for generation of noise–power–distance data for use within AEDT. One utilizes the AEDT fixed-wing aircraft modeling approach, and the other utilizes the AEDT rotary-wing aircraft modeling approach.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.