A Poincaré Formula for Differential Forms and Applications

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Nicolas Ginoux, Georges Habib, Simon Raulot
{"title":"A Poincaré Formula for Differential Forms and Applications","authors":"Nicolas Ginoux, Georges Habib, Simon Raulot","doi":"10.3842/sigma.2023.088","DOIUrl":null,"url":null,"abstract":"We prove a new general Poincaré-type inequality for differential forms on compact Riemannian manifolds with nonempty boundary. When the boundary is isometrically immersed in Euclidean space, we derive a new inequality involving mean and scalar curvatures of the boundary only and characterize its limiting case in codimension one. A new Ros-type inequality for differential forms is also derived assuming the existence of a nonzero parallel form on the manifold.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"116 3","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.088","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a new general Poincaré-type inequality for differential forms on compact Riemannian manifolds with nonempty boundary. When the boundary is isometrically immersed in Euclidean space, we derive a new inequality involving mean and scalar curvatures of the boundary only and characterize its limiting case in codimension one. A new Ros-type inequality for differential forms is also derived assuming the existence of a nonzero parallel form on the manifold.
微分形式的poincarcars公式及其应用
在非空边界紧黎曼流形上证明了微分形式的一个新的一般poincar型不等式。当边界等距浸入欧几里德空间时,我们导出了一个只涉及边界的平均曲率和标量曲率的不等式,并刻画了它在余维1上的极限情况。在流形上存在非零平行形式的前提下,导出了微分形式下的一个新的ros型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信