A survey of the homology cobordism group

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Oğuz Şavk
{"title":"A survey of the homology cobordism group","authors":"Oğuz Şavk","doi":"10.1090/bull/1806","DOIUrl":null,"url":null,"abstract":"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Q Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology 3 3 -spheres and the structure of Θ Z 3 \Theta _{\mathbb {Z}}^3 . Finally, we briefly discuss the knot concordance group C \mathcal {C} and the rational homology cobordism group Θ Q 3 \Theta _{\mathbb {Q}}^3 , focusing on their algebraic structures, relating them to Θ Z 3 \Theta _{\mathbb {Z}}^3 , and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology 3 3 -spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.
同源配位群的综述
在这个调查中,我们提出了最近的亮点,从研究的同调配群,特别强调其长期和丰富的历史,在光滑流形的背景下。进一步,我们列出了关于它的代数结构的各种结果,并讨论了它在低维拓扑发展中的重要作用。此外,我们还讨论了一系列关于同调33 -球的行为和Θ z3 \Theta _{\mathbb {Z}}^3结构的开放问题。最后,我们简要讨论了结谐和群C \mathcal {C}和有理同调群Θ Q 3 \Theta _{\mathbb {Q}}^3,重点讨论了它们的代数结构,并将它们与Θ Z 3 \Theta _{\mathbb {Z}}^3联系起来,突出了几个开放问题。附录是由Brieskorn, Dehn, Gordon, Seifert, Siebenmann和Waldhausen介绍的几个同构33球的构造和表示的汇编。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信