Effective rigidity away from the boundary for centrally symmetric billiards

IF 0.8 3区 数学 Q2 MATHEMATICS
MISHA BIALY
{"title":"Effective rigidity away from the boundary for centrally symmetric billiards","authors":"MISHA BIALY","doi":"10.1017/etds.2023.70","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study centrally symmetric Birkhoff billiard tables. We introduce a closed invariant set $\\mathcal {M}_{\\mathcal {B}}$ consisting of locally maximizing orbits of the billiard map lying inside the region $\\mathcal {B}$ bounded by two invariant curves of $4$ -periodic orbits. We give an effective bound from above on the measure of this invariant set in terms of the isoperimetric defect of the curve. The equality case occurs if and only if the curve is a circle.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.70","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we study centrally symmetric Birkhoff billiard tables. We introduce a closed invariant set $\mathcal {M}_{\mathcal {B}}$ consisting of locally maximizing orbits of the billiard map lying inside the region $\mathcal {B}$ bounded by two invariant curves of $4$ -periodic orbits. We give an effective bound from above on the measure of this invariant set in terms of the isoperimetric defect of the curve. The equality case occurs if and only if the curve is a circle.
中心对称台球远离边界的有效刚性
摘要本文研究中心对称Birkhoff台球桌。我们引入了一个闭不变集$\mathcal {M}_{\mathcal {B}}$,它由位于$\mathcal {B}$区域内的台球图的局部最大化轨道组成,该区域由$ $4$ $周期轨道的两条不变曲线所包围。根据曲线的等周缺陷,给出了该不变集的测度的有效界。当且仅当曲线为圆时,等式成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信