{"title":"ÇELİK MALZEME SATIN ALMA SÜREÇLERİNDE VERİ MADENCİLİĞİ VE MAKİNE ÖĞRENMESİ UYGULAMALARI","authors":"Seray MİRASÇI, Aslı AKSOY","doi":"10.21923/jesd.1221635","DOIUrl":null,"url":null,"abstract":"Firmaların varlıklarını sürdürebilmeleri için, belli karlılık hedeflerini tutturmaları gerekmektedir. Firmalarda karlılık hedeflerine doğrudan etki eden faaliyetlerden biri de satın almadır. Değişen dünya koşullarında satın alma süreçlerinin kritik malzeme grupları için çevik ve stratejik olması gerekmektedir. Bu çalışmada, çelik malzeme ürün grubunda stratejik satın alma kararlarının verilmesi ve karlılığın arttırılması için veri madenciliği ve makine öğrenmesi yöntemleri ortaya konmuştur. Veri setinde bulunan gürültülü veriler tespit edilerek veri madenciliği teknikleri ile temizlenmiştir. Temizlenen veri seti makine öğrenmesi tekniklerinden kümeleme analizlerinden hiyerarşik kümeleme ve K-ortalamalar yöntemleri kullanılarak analiz edilmiştir. Bu analizde ideal küme sayısı ve bulunan ideal küme sayısının doğrulaması yapılmış olup stratejik açıdan en önemli proje ortaya konmuştur. Seçilen projede yer alan malzeme detayları teknik olarak incelenip, tüketim, kalınlık ve çelik malzemenin haddeleme tipi dikkate alınarak karlılık getirmesi beklenen satın alma stratejileri ortaya konmuştur. Bu çalışmada önerilen analizler ile satın alma süreçlerinde, çalışan kaynaklı hataların satın alma stratejileri geliştirme süreçlerindeki etkileri azaltılmış, satın alma çalışanlarının uzun zaman harcayarak yapacağı analizler, veri analizi ve makine öğrenmesi gibi endüstri mühendisliği yöntemleri ile gerçekleştirilmiştir.","PeriodicalId":500615,"journal":{"name":"Mühendislik bilimleri ve tasarım dergisi","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mühendislik bilimleri ve tasarım dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21923/jesd.1221635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Firmaların varlıklarını sürdürebilmeleri için, belli karlılık hedeflerini tutturmaları gerekmektedir. Firmalarda karlılık hedeflerine doğrudan etki eden faaliyetlerden biri de satın almadır. Değişen dünya koşullarında satın alma süreçlerinin kritik malzeme grupları için çevik ve stratejik olması gerekmektedir. Bu çalışmada, çelik malzeme ürün grubunda stratejik satın alma kararlarının verilmesi ve karlılığın arttırılması için veri madenciliği ve makine öğrenmesi yöntemleri ortaya konmuştur. Veri setinde bulunan gürültülü veriler tespit edilerek veri madenciliği teknikleri ile temizlenmiştir. Temizlenen veri seti makine öğrenmesi tekniklerinden kümeleme analizlerinden hiyerarşik kümeleme ve K-ortalamalar yöntemleri kullanılarak analiz edilmiştir. Bu analizde ideal küme sayısı ve bulunan ideal küme sayısının doğrulaması yapılmış olup stratejik açıdan en önemli proje ortaya konmuştur. Seçilen projede yer alan malzeme detayları teknik olarak incelenip, tüketim, kalınlık ve çelik malzemenin haddeleme tipi dikkate alınarak karlılık getirmesi beklenen satın alma stratejileri ortaya konmuştur. Bu çalışmada önerilen analizler ile satın alma süreçlerinde, çalışan kaynaklı hataların satın alma stratejileri geliştirme süreçlerindeki etkileri azaltılmış, satın alma çalışanlarının uzun zaman harcayarak yapacağı analizler, veri analizi ve makine öğrenmesi gibi endüstri mühendisliği yöntemleri ile gerçekleştirilmiştir.