Identification of lung disease types using convolutional neural network and VGG-16 architecture

Q4 Computer Science
Saiful Bukhori, Bangkit Yudho Negoro Verdy, Yulia Retnani Windi Eka, Adi Putra Januar
{"title":"Identification of lung disease types using convolutional neural network and VGG-16 architecture","authors":"Saiful Bukhori, Bangkit Yudho Negoro Verdy, Yulia Retnani Windi Eka, Adi Putra Januar","doi":"10.20535/srit.2308-8893.2023.3.07","DOIUrl":null,"url":null,"abstract":"Pneumonia, tuberculosis, and Covid-19 are different lung diseases but have similar characteristics. One of the reasons for the worsening of disease in lung sufferers is a diagnosis that takes a long time. Another factor, the results of the X-ray photos look blurry and lack contracture, causing different diagnostic results of X-ray photos. This research classifies lung images into four categories: normal lungs, tuberculosis, pneumonia, and Covid-19 using the Convolutional Neural Network method and VGG-16 architecture. The results of the research with models and scenarios without pre-trained use data with a ratio of 9:1 at epoch 50, an accuracy of 94%, while the lowest results are in scenarios using data with a ratio of 8:2 at epoch 50, non-pre-trained models, accuracy by 87%.","PeriodicalId":30502,"journal":{"name":"Sistemni Doslidzena ta Informacijni Tehnologii","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemni Doslidzena ta Informacijni Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2023.3.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Pneumonia, tuberculosis, and Covid-19 are different lung diseases but have similar characteristics. One of the reasons for the worsening of disease in lung sufferers is a diagnosis that takes a long time. Another factor, the results of the X-ray photos look blurry and lack contracture, causing different diagnostic results of X-ray photos. This research classifies lung images into four categories: normal lungs, tuberculosis, pneumonia, and Covid-19 using the Convolutional Neural Network method and VGG-16 architecture. The results of the research with models and scenarios without pre-trained use data with a ratio of 9:1 at epoch 50, an accuracy of 94%, while the lowest results are in scenarios using data with a ratio of 8:2 at epoch 50, non-pre-trained models, accuracy by 87%.
基于卷积神经网络和VGG-16架构的肺部疾病类型识别
肺炎、结核病和Covid-19是不同的肺部疾病,但具有相似的特征。肺病患者病情恶化的原因之一是诊断需要很长时间。另一个因素是x线照片结果模糊,缺乏挛缩,导致x线照片的诊断结果不同。本研究使用卷积神经网络方法和VGG-16架构将肺部图像分为正常肺、肺结核、肺炎和Covid-19四类。未经预训练的模型和场景的研究结果使用的数据在epoch 50的比例为9:1,准确率为94%,而使用数据在epoch 50的比例为8:2的场景的研究结果最低,非预训练的模型,准确率为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sistemni Doslidzena ta Informacijni Tehnologii
Sistemni Doslidzena ta Informacijni Tehnologii Computer Science-Computational Theory and Mathematics
CiteScore
0.60
自引率
0.00%
发文量
22
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信