Xia Sun, Dominikus Heinzeller, Ligia Bernardet, Linlin Pan, Weiwei Li, David Turner, John Brown
{"title":"A Case Study Investigating the Low Summertime CAPE Behavior in the Global Forecast System","authors":"Xia Sun, Dominikus Heinzeller, Ligia Bernardet, Linlin Pan, Weiwei Li, David Turner, John Brown","doi":"10.1175/waf-d-22-0208.1","DOIUrl":null,"url":null,"abstract":"Abstract Convective available potential energy (CAPE) is an important index for storm forecasting. Recent versions (v15.2 and v16) of the Global Forecast System (GFS) predict lower values of CAPE during summertime in the continental U.S. than analysis and observation. We conducted an evaluation of the GFS in simulating summertime CAPE using an example from the Unified Forecast System Case Study collection to investigate the factors that lead to the low CAPE bias in GFS. Specifically, we investigated the surface energy budget, soil properties, and near-surface and upper-level meteorological fields. Results show that the GFS simulates smaller surface latent heat flux and larger surface sensible heat flux than the observations. This can be attributed to the slightly drier-than-observed soil moisture in the GFS which comes from an offline global land data assimilation system. The lower simulated CAPE in GFS v16 is related to the early drop of surface net radiation with excessive boundary layer cloud after midday compared with GFS v15.2. A moisture-budget analysis indicates that errors in the large-scale advection of water vapor does not contribute to the dry bias in the GFS at low levels. Common Community Physics Package single-column model (SCM) experiments suggest that with realistic initial vertical profiles, SCM simulations generate a larger CAPE than runs with GFS IC. SCM runs with an active LSM tend to produce smaller CAPE than that with prescribed surface fluxes. Note that the findings are only applicable to this case study. Including more warm-season cases would enhance the generalizability of our findings.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"73 S7","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-22-0208.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Convective available potential energy (CAPE) is an important index for storm forecasting. Recent versions (v15.2 and v16) of the Global Forecast System (GFS) predict lower values of CAPE during summertime in the continental U.S. than analysis and observation. We conducted an evaluation of the GFS in simulating summertime CAPE using an example from the Unified Forecast System Case Study collection to investigate the factors that lead to the low CAPE bias in GFS. Specifically, we investigated the surface energy budget, soil properties, and near-surface and upper-level meteorological fields. Results show that the GFS simulates smaller surface latent heat flux and larger surface sensible heat flux than the observations. This can be attributed to the slightly drier-than-observed soil moisture in the GFS which comes from an offline global land data assimilation system. The lower simulated CAPE in GFS v16 is related to the early drop of surface net radiation with excessive boundary layer cloud after midday compared with GFS v15.2. A moisture-budget analysis indicates that errors in the large-scale advection of water vapor does not contribute to the dry bias in the GFS at low levels. Common Community Physics Package single-column model (SCM) experiments suggest that with realistic initial vertical profiles, SCM simulations generate a larger CAPE than runs with GFS IC. SCM runs with an active LSM tend to produce smaller CAPE than that with prescribed surface fluxes. Note that the findings are only applicable to this case study. Including more warm-season cases would enhance the generalizability of our findings.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.