Asymptotic approximations of expectations of power means

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tomislav Buri, Lenka Mihokovi
{"title":"Asymptotic approximations of expectations of power means","authors":"Tomislav Buri, Lenka Mihokovi","doi":"10.1111/stan.12331","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study how the expectations of power means behave asymptotically as some relevant parameter approaches infinity and how to approximate them accurately for general non‐negative continuous probability distributions. We derive approximation formulae for such expectations as distribution mean increases, and apply them to some commonly used distributions in statistics and financial mathematics. By numerical computations we demonstrate the accuracy of the proposed formulae which behave well even for smaller sample sizes. Furthermore, analysis of behaviour depending on sample size contributes to interesting connections with the power mean of probability distribution. This article is protected by copyright. All rights reserved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12331","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper we study how the expectations of power means behave asymptotically as some relevant parameter approaches infinity and how to approximate them accurately for general non‐negative continuous probability distributions. We derive approximation formulae for such expectations as distribution mean increases, and apply them to some commonly used distributions in statistics and financial mathematics. By numerical computations we demonstrate the accuracy of the proposed formulae which behave well even for smaller sample sizes. Furthermore, analysis of behaviour depending on sample size contributes to interesting connections with the power mean of probability distribution. This article is protected by copyright. All rights reserved.
幂均值期望的渐近逼近
摘要本文研究了一般非负连续概率分布的幂均值期望值在相关参数趋于无穷时的渐近性,以及如何精确地逼近它们。本文推导了分布均值增加期望值的近似公式,并将其应用于统计和金融数学中一些常用的分布。通过数值计算,我们证明了所提出公式的准确性,即使在较小的样本量下也表现良好。此外,根据样本量对行为进行分析有助于与概率分布的幂均值建立有趣的联系。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信