A. Yaremkevych, O. Fesenko, V. Hryn, P. Yezhov, S. Bellucci, T. Smirnova
{"title":"Investigation of graphene flake and photonic crystal structure enhancement effect by Raman spectroscopy of thymine","authors":"A. Yaremkevych, O. Fesenko, V. Hryn, P. Yezhov, S. Bellucci, T. Smirnova","doi":"10.1080/15421406.2023.2278197","DOIUrl":null,"url":null,"abstract":"AbstractRaman spectroscopy is widely used for studying bioorganic materials. However, dealing with biological samples presents challenges such as limited quantities, tight timelines, complex preparation, and the need for improved precision. Hence, efforts are needed to enhance sensitivity and visualization for specific molecules or cells. This study explored using periodic waveguide structures (PWS) to amplify Raman signals of biological molecules, focusing on thymine. We found that composite nanostructures significantly boosted thymine’s Raman signal, further enhanced by injecting graphene nanoflakes. This research highlights the potential of enhanced Raman techniques in bioanalysis and paves the way for future advancements in this field.Keywords: Biological moleculesgrapheneperiodic waveguide structuresRaman spectroscopythymine Disclosure statementNo potential conflict of interest was reported by the author(s).Declaration of interest statementThe authors report there are no competing interests to declare.Additional informationFundingThis work was supported by the grant of the National Research Foundation of Ukraine within the framework of the Project 2022.01/0011 \"Innovative photonic technologies of bio-medical direction for the post-war reconstruction of Ukraine\", the Project №1.4. В/199 “Study of optical, plasmonic, and electrophysical properties of metal-carbon nanostructures”, the NATO Multi-years Project SPS G5351 “Nanocomposite Based Photonic Crystal Sensors of Biological and Chemical Agents”, the internal project of Fraunhofer IAP “Development of holographic photonic crystals using organic-inorganic nanocomposites as components for marker-free optical sensors”, and the Target Program of Fundamental Research of National Academy of Sciences of Ukraine, Project “Laser engineering of nanoobjects: physical foundations and applications”.","PeriodicalId":18758,"journal":{"name":"Molecular Crystals and Liquid Crystals","volume":"131 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Crystals and Liquid Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15421406.2023.2278197","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractRaman spectroscopy is widely used for studying bioorganic materials. However, dealing with biological samples presents challenges such as limited quantities, tight timelines, complex preparation, and the need for improved precision. Hence, efforts are needed to enhance sensitivity and visualization for specific molecules or cells. This study explored using periodic waveguide structures (PWS) to amplify Raman signals of biological molecules, focusing on thymine. We found that composite nanostructures significantly boosted thymine’s Raman signal, further enhanced by injecting graphene nanoflakes. This research highlights the potential of enhanced Raman techniques in bioanalysis and paves the way for future advancements in this field.Keywords: Biological moleculesgrapheneperiodic waveguide structuresRaman spectroscopythymine Disclosure statementNo potential conflict of interest was reported by the author(s).Declaration of interest statementThe authors report there are no competing interests to declare.Additional informationFundingThis work was supported by the grant of the National Research Foundation of Ukraine within the framework of the Project 2022.01/0011 "Innovative photonic technologies of bio-medical direction for the post-war reconstruction of Ukraine", the Project №1.4. В/199 “Study of optical, plasmonic, and electrophysical properties of metal-carbon nanostructures”, the NATO Multi-years Project SPS G5351 “Nanocomposite Based Photonic Crystal Sensors of Biological and Chemical Agents”, the internal project of Fraunhofer IAP “Development of holographic photonic crystals using organic-inorganic nanocomposites as components for marker-free optical sensors”, and the Target Program of Fundamental Research of National Academy of Sciences of Ukraine, Project “Laser engineering of nanoobjects: physical foundations and applications”.
期刊介绍:
Established in 1966, Molecular Crystals and Liquid Crystals is a world-leading journal publishing original research papers in both an experimental and theoretical nature in three areas of specialization: liquid crystals, molecular crystals, and low-dimensional solids. These cover, but are not limited to:
Liquid Crystals:
-Electro- and magneto-optical phenomena; thermodynamics; phase transitions; structure; NMR and orientation-controlled spectroscopy; theory.
Molecular Crystals:
-Spectroscopy; energy and charge transfer; solid state reactions; photo and radiation effects
Low-dimensional Solids:
-Structure, electronic, magnetic, and optical properties; transport mechanisms
The journal publishes research papers, review papers, and book reviews. In all three areas, experimental manuscripts describing both preparation and properties will be considered. Papers that describe determination of crystal structure alone are not encouraged unless some solid state forces (hydrogen bonding, charge transfer, etc.) are playing a significant role and/or some solid state properties of the materials are measured.