HURST EXPONENT ESTIMATION FOR SHORT-TIME SERIES BASED ON SINGULAR VALUE DECOMPOSITION ENTROPY

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
J. ALVAREZ-RAMIREZ, E. RODRIGUEZ, L. CASTRO
{"title":"HURST EXPONENT ESTIMATION FOR SHORT-TIME SERIES BASED ON SINGULAR VALUE DECOMPOSITION ENTROPY","authors":"J. ALVAREZ-RAMIREZ, E. RODRIGUEZ, L. CASTRO","doi":"10.1142/s0218348x23501323","DOIUrl":null,"url":null,"abstract":"Complex time series appear commonly in a large diversity of the science, engineering, economy, financial and social fields. In many instances, complex time series exhibit scaling behavior over a wide range of scales. The traditional rescaled-range (R/S) analysis and the detrended fluctuation analysis (DFA) are commonly used to characterize the scaling behavior via the Hurst exponent. These methods perform well for long-time series. However, the performance may be poor for short times resulting from scarce measurements (e.g. less than a hundred). This work proposes an approach based on singular value decomposition (SVD) entropy for estimating the Hurst exponent for short-time series. In the first step, synthetic time series were used to find the relationship between Hurst exponent and SVD entropy. In the second step, an empirical relationship was proposed to estimate the Hurst exponent from SVD entropy computations of the time series. The performance of the approach was illustrated with two examples of real-time series (consumer price index (CPI) and El Niño Oceanic Index), showing that the estimated Hurst exponent provides valuable insights into the physical mechanisms involved in the generation of the time series.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501323","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Complex time series appear commonly in a large diversity of the science, engineering, economy, financial and social fields. In many instances, complex time series exhibit scaling behavior over a wide range of scales. The traditional rescaled-range (R/S) analysis and the detrended fluctuation analysis (DFA) are commonly used to characterize the scaling behavior via the Hurst exponent. These methods perform well for long-time series. However, the performance may be poor for short times resulting from scarce measurements (e.g. less than a hundred). This work proposes an approach based on singular value decomposition (SVD) entropy for estimating the Hurst exponent for short-time series. In the first step, synthetic time series were used to find the relationship between Hurst exponent and SVD entropy. In the second step, an empirical relationship was proposed to estimate the Hurst exponent from SVD entropy computations of the time series. The performance of the approach was illustrated with two examples of real-time series (consumer price index (CPI) and El Niño Oceanic Index), showing that the estimated Hurst exponent provides valuable insights into the physical mechanisms involved in the generation of the time series.
基于奇异值分解熵的短时间序列Hurst指数估计
复杂时间序列广泛应用于科学、工程、经济、金融和社会等领域。在许多情况下,复杂的时间序列在很宽的尺度范围内表现出缩放行为。传统的重标度范围(R/S)分析和去趋势波动分析(DFA)常用来通过赫斯特指数来表征标度行为。这些方法在长时间序列上表现良好。然而,由于缺乏测量(例如少于100个),性能可能在短时间内较差。本文提出了一种基于奇异值分解(SVD)熵的短时序列Hurst指数估计方法。第一步,利用合成时间序列寻找Hurst指数与SVD熵的关系。在第二步,提出了一种经验关系,从时间序列的SVD熵计算中估计Hurst指数。通过两个实时序列(消费者价格指数(CPI)和El Niño海洋指数)的例子说明了该方法的性能,表明估计的Hurst指数为时间序列生成所涉及的物理机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信