Practical application of an ultra-miniature creep test to the remaining creep-rupture life prediction using an iso–stress approach for in-service boiler piping of modified 9Cr-1Mo steel
IF 1 4区 材料科学Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Practical application of an ultra-miniature creep test to the remaining creep-rupture life prediction using an iso–stress approach for in-service boiler piping of modified 9Cr-1Mo steel","authors":"Hirohide Nakatsuka, Chiaki Hisaka, Kazukiyo Takahashi, Akito Nitta, Masatsugu Yaguchi","doi":"10.1080/09603409.2023.2278361","DOIUrl":null,"url":null,"abstract":"ABSTRACTA practical procedure for predicting the remaining creep-rupture life of in-service boiler pipes under their operating conditions is proposed and discussed in this study. Tests were conducted on a coupon obtained using electric discharge sampling equipment from the outer surface of an in-service boiler pipe of modified 9Cr-1Mo steel. An ultra-miniature creep (UMC) specimen machined from the coupon was employed for the tensile creep test. Focusing on an iso–stress approach that has potential for the remaining life prediction using a limited test data, its suitability has been discussed. Test results indicate that the iso–stress approach can be applied to predict the remaining creep-rupture life using the UMC testing method with high accuracy. Furthermore, an examination of the high-temperature oxidation resistance of the UMC specimen indicated that oxidation had little influence on the rupture time.KEYWORDS: In-service pipingmodified 9Cr-1Mo steelremaining creep life predictionultra-miniature specimeniso–stress approachLarson–Miller parameterMonkman–Grant relationshiphigh-temperature oxidation Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"120 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2278361","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTA practical procedure for predicting the remaining creep-rupture life of in-service boiler pipes under their operating conditions is proposed and discussed in this study. Tests were conducted on a coupon obtained using electric discharge sampling equipment from the outer surface of an in-service boiler pipe of modified 9Cr-1Mo steel. An ultra-miniature creep (UMC) specimen machined from the coupon was employed for the tensile creep test. Focusing on an iso–stress approach that has potential for the remaining life prediction using a limited test data, its suitability has been discussed. Test results indicate that the iso–stress approach can be applied to predict the remaining creep-rupture life using the UMC testing method with high accuracy. Furthermore, an examination of the high-temperature oxidation resistance of the UMC specimen indicated that oxidation had little influence on the rupture time.KEYWORDS: In-service pipingmodified 9Cr-1Mo steelremaining creep life predictionultra-miniature specimeniso–stress approachLarson–Miller parameterMonkman–Grant relationshiphigh-temperature oxidation Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.