Optical Properties of Charged Defects in Monolayer MoS2

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Martik Aghajanian, Arash A Mostofi, Johannes Lischner
{"title":"Optical Properties of Charged Defects in Monolayer MoS<sub>2</sub>","authors":"Martik Aghajanian, Arash A Mostofi, Johannes Lischner","doi":"10.1088/2516-1075/ad0abf","DOIUrl":null,"url":null,"abstract":"Abstract We present theoretical calculations of the optical spectrum of monolayer MoS2 with a charged defect. In particular, we solve the Bethe-Salpeter equation based on an atomistic tight-binding model of the MoS2 electronic structure which allows calculations for large supercells. The defect is modelled as a point charge whose potential is screened by the MoS2 electrons. We find that the defect gives rise to new peaks in the optical spectrum approximately 100-200 meV below the first free exciton peak. These peaks arise from transitions involving in-gap bound states induced by the charged defect. Our findings are in good agreement with experimental measurements.&amp;#xD;","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" 21","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad0abf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We present theoretical calculations of the optical spectrum of monolayer MoS2 with a charged defect. In particular, we solve the Bethe-Salpeter equation based on an atomistic tight-binding model of the MoS2 electronic structure which allows calculations for large supercells. The defect is modelled as a point charge whose potential is screened by the MoS2 electrons. We find that the defect gives rise to new peaks in the optical spectrum approximately 100-200 meV below the first free exciton peak. These peaks arise from transitions involving in-gap bound states induced by the charged defect. Our findings are in good agreement with experimental measurements.&#xD;
单层MoS2中带电缺陷的光学性质
摘要本文给出了带电荷缺陷的MoS2单层光谱的理论计算。特别是,我们基于二硫化钼电子结构的原子紧密结合模型求解了Bethe-Salpeter方程,该模型允许对大型超级电池进行计算。该缺陷被模拟为点电荷,其电势被二硫化钼电子屏蔽。我们发现该缺陷在光谱中产生新的峰,在第一个自由激子峰以下约100-200 meV。这些峰是由带电缺陷引起的涉及隙内束缚态的跃迁引起的。我们的发现与实验测量结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信