Mastermind with a linear number of queries

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Anders Martinsson, Pascal Su
{"title":"Mastermind with a linear number of queries","authors":"Anders Martinsson, Pascal Su","doi":"10.1017/s0963548323000366","DOIUrl":null,"url":null,"abstract":"Abstract Since the 1960s Mastermind has been studied for the combinatorial and information-theoretical interest the game has to offer. Many results have been discovered starting with Erdős and Rényi determining the optimal number of queries needed for two colours. For $k$ colours and $n$ positions, Chvátal found asymptotically optimal bounds when $k \\le n^{1-\\varepsilon }$ . Following a sequence of gradual improvements for $k\\geq n$ colours, the central open question is to resolve the gap between $\\Omega (n)$ and $\\mathcal{O}(n\\log \\log n)$ for $k=n$ . In this paper, we resolve this gap by presenting the first algorithm for solving $k=n$ Mastermind with a linear number of queries. As a consequence, we are able to determine the query complexity of Mastermind for any parameters $k$ and $n$ .","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000366","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Since the 1960s Mastermind has been studied for the combinatorial and information-theoretical interest the game has to offer. Many results have been discovered starting with Erdős and Rényi determining the optimal number of queries needed for two colours. For $k$ colours and $n$ positions, Chvátal found asymptotically optimal bounds when $k \le n^{1-\varepsilon }$ . Following a sequence of gradual improvements for $k\geq n$ colours, the central open question is to resolve the gap between $\Omega (n)$ and $\mathcal{O}(n\log \log n)$ for $k=n$ . In this paper, we resolve this gap by presenting the first algorithm for solving $k=n$ Mastermind with a linear number of queries. As a consequence, we are able to determine the query complexity of Mastermind for any parameters $k$ and $n$ .
具有线性查询数的策划者
自20世纪60年代以来,人们一直在研究《智囊》游戏所提供的组合和信息理论兴趣。许多结果都是从Erdős和r nyi开始的,它们决定了两种颜色所需的最佳查询次数。对于$k$的颜色和$n$的位置,Chvátal找到渐近最优界,当$k \le n^{1-\varepsilon }$。随着对$k\geq n$颜色的一系列逐步改进,中心的开放问题是解决$k=n$的$\Omega (n)$和$\mathcal{O}(n\log \log n)$之间的差距。在本文中,我们通过提出第一个用线性查询数求解$k=n$ Mastermind的算法来解决这一差距。因此,我们能够确定Mastermind对任何参数$k$和$n$的查询复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信