{"title":"Localization operators and inversion formulas for the Dunkl–Weinstein–Stockwell transform","authors":"Fethi Soltani, Ibrahim Maktouf","doi":"10.1515/gmj-2023-2077","DOIUrl":null,"url":null,"abstract":"Abstract We define and study the Stockwell transform <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> \\mathscr{S}_{g} associated to the Dunkl–Weinstein operator <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> </m:math> \\Delta_{k,\\beta} and prove a Plancherel theorem and an inversion formula. Next, we define a reconstruction function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:msub> </m:math> f_{\\Delta} and prove Calderón’s reproducing inversion formula for the Dunkl–Weinstein–Stockwell transform <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> \\mathscr{S}_{g} . Moreover, we define the localization operators <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">L</m:mi> <m:mi>g</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathcal{L}_{g}(\\sigma) associated to this transform. We study the boundedness and compactness of these operators and establish a trace formula. Finally, we introduce and study the extremal function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>F</m:mi> <m:mrow> <m:mi>η</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>η</m:mi> <m:mo></m:mo> <m:mi>I</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> <m:mo>∗</m:mo> </m:msubsup> <m:mo></m:mo> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:msubsup> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> <m:mo>∗</m:mo> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> F^{\\ast}_{\\eta,\\smash{k}}:=(\\eta I+\\mathscr{S}^{\\ast}_{g}\\mathscr{S}_{g})^{-1}\\mathscr{S}^{\\ast}_{g}(k) , and we deduce best approximate inversion formulas for the Dunkl–Weinstein–Stockwell transform <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> \\mathscr{S}_{g} on the Sobolev space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi mathvariant=\"script\">H</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathscr{H}^{s}_{k,\\beta}(\\mathbb{R}_{+}^{d+1}) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We define and study the Stockwell transform Sg \mathscr{S}_{g} associated to the Dunkl–Weinstein operator Δk,β \Delta_{k,\beta} and prove a Plancherel theorem and an inversion formula. Next, we define a reconstruction function fΔ f_{\Delta} and prove Calderón’s reproducing inversion formula for the Dunkl–Weinstein–Stockwell transform Sg \mathscr{S}_{g} . Moreover, we define the localization operators Lg(σ) \mathcal{L}_{g}(\sigma) associated to this transform. We study the boundedness and compactness of these operators and establish a trace formula. Finally, we introduce and study the extremal function Fη,k∗:=(ηI+Sg∗Sg)−1Sg∗(k) F^{\ast}_{\eta,\smash{k}}:=(\eta I+\mathscr{S}^{\ast}_{g}\mathscr{S}_{g})^{-1}\mathscr{S}^{\ast}_{g}(k) , and we deduce best approximate inversion formulas for the Dunkl–Weinstein–Stockwell transform Sg \mathscr{S}_{g} on the Sobolev space Hk,βs(R+d+1) \mathscr{H}^{s}_{k,\beta}(\mathbb{R}_{+}^{d+1}) .