Localization operators and inversion formulas for the Dunkl–Weinstein–Stockwell transform

Pub Date : 2023-11-08 DOI:10.1515/gmj-2023-2077
Fethi Soltani, Ibrahim Maktouf
{"title":"Localization operators and inversion formulas for the Dunkl–Weinstein–Stockwell transform","authors":"Fethi Soltani, Ibrahim Maktouf","doi":"10.1515/gmj-2023-2077","DOIUrl":null,"url":null,"abstract":"Abstract We define and study the Stockwell transform <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> \\mathscr{S}_{g} associated to the Dunkl–Weinstein operator <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> </m:math> \\Delta_{k,\\beta} and prove a Plancherel theorem and an inversion formula. Next, we define a reconstruction function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>f</m:mi> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:msub> </m:math> f_{\\Delta} and prove Calderón’s reproducing inversion formula for the Dunkl–Weinstein–Stockwell transform <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> \\mathscr{S}_{g} . Moreover, we define the localization operators <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">L</m:mi> <m:mi>g</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathcal{L}_{g}(\\sigma) associated to this transform. We study the boundedness and compactness of these operators and establish a trace formula. Finally, we introduce and study the extremal function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>F</m:mi> <m:mrow> <m:mi>η</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>η</m:mi> <m:mo>⁢</m:mo> <m:mi>I</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msubsup> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> <m:mo>∗</m:mo> </m:msubsup> <m:mo>⁢</m:mo> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:msubsup> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> <m:mo>∗</m:mo> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> F^{\\ast}_{\\eta,\\smash{k}}:=(\\eta I+\\mathscr{S}^{\\ast}_{g}\\mathscr{S}_{g})^{-1}\\mathscr{S}^{\\ast}_{g}(k) , and we deduce best approximate inversion formulas for the Dunkl–Weinstein–Stockwell transform <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">S</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> \\mathscr{S}_{g} on the Sobolev space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi mathvariant=\"script\">H</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mi>s</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathscr{H}^{s}_{k,\\beta}(\\mathbb{R}_{+}^{d+1}) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We define and study the Stockwell transform S g \mathscr{S}_{g} associated to the Dunkl–Weinstein operator Δ k , β \Delta_{k,\beta} and prove a Plancherel theorem and an inversion formula. Next, we define a reconstruction function f Δ f_{\Delta} and prove Calderón’s reproducing inversion formula for the Dunkl–Weinstein–Stockwell transform S g \mathscr{S}_{g} . Moreover, we define the localization operators L g ( σ ) \mathcal{L}_{g}(\sigma) associated to this transform. We study the boundedness and compactness of these operators and establish a trace formula. Finally, we introduce and study the extremal function F η , k := ( η I + S g S g ) 1 S g ( k ) F^{\ast}_{\eta,\smash{k}}:=(\eta I+\mathscr{S}^{\ast}_{g}\mathscr{S}_{g})^{-1}\mathscr{S}^{\ast}_{g}(k) , and we deduce best approximate inversion formulas for the Dunkl–Weinstein–Stockwell transform S g \mathscr{S}_{g} on the Sobolev space H k , β s ( R + d + 1 ) \mathscr{H}^{s}_{k,\beta}(\mathbb{R}_{+}^{d+1}) .
分享
查看原文
Dunkl-Weinstein-Stockwell变换的定位算子和反演公式
定义并研究了与Dunkl-Weinstein算子Δ k, β \Delta _k, {}{\beta}相关的Stockwell变换S {g}\mathscr{S} _g,并证明了Plancherel定理和反演公式。接下来,我们定义了重建函数f Δ f_ {\Delta},并证明了Calderón对Dunkl-Weinstein-Stockwell变换S g \mathscr{S} _g{的再现反演公式。此外,我们定义了与该变换相关的定位算子L g∑}\mathcal{L} _g{(}\sigma)。我们研究了这些算子的有界性和紧性,并建立了一个迹公式。最后,我们引入并研究了极值函数F η k∗:=(η∑I+ S g∗∑S g)−1∑S g∗(k) F^ {\ast} _ {\eta, \smash{k}}:=(\eta I+ \mathscr{S} _ {\ast} _g{}\mathscr{S} _g{)^}-1{}\mathscr{S} _ {\ast} _g{(k),并推导出Sobolev空间H k上的Dunkl-Weinstein-Stockwell变换S g }\mathscr{S} _g{的最佳近似反演公式。β s¹(R + d+1) }\mathscr{H} ^{s_k}{\beta} (\mathbb{R} _+^{d}+{1)}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信