Poset Ramsey numbers: large Boolean lattice versus a fixed poset

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Maria Axenovich, Christian Winter
{"title":"Poset Ramsey numbers: large Boolean lattice versus a fixed poset","authors":"Maria Axenovich, Christian Winter","doi":"10.1017/s0963548323000032","DOIUrl":null,"url":null,"abstract":"Abstract Given partially ordered sets (posets) $(P, \\leq _P\\!)$ and $(P^{\\prime}, \\leq _{P^{\\prime}}\\!)$ , we say that $P^{\\prime}$ contains a copy of $P$ if for some injective function $f\\,:\\, P\\rightarrow P^{\\prime}$ and for any $X, Y\\in P$ , $X\\leq _P Y$ if and only if $f(X)\\leq _{P^{\\prime}} f(Y)$ . For any posets $P$ and $Q$ , the poset Ramsey number $R(P,Q)$ is the least positive integer $N$ such that no matter how the elements of an $N$ -dimensional Boolean lattice are coloured in blue and red, there is either a copy of $P$ with all blue elements or a copy of $Q$ with all red elements. We focus on a poset Ramsey number $R(P, Q_n)$ for a fixed poset $P$ and an $n$ -dimensional Boolean lattice $Q_n$ , as $n$ grows large. We show a sharp jump in behaviour of this number as a function of $n$ depending on whether or not $P$ contains a copy of either a poset $V$ , that is a poset on elements $A, B, C$ such that $B\\gt C$ , $A\\gt C$ , and $A$ and $B$ incomparable, or a poset $\\Lambda$ , its symmetric counterpart. Specifically, we prove that if $P$ contains a copy of $V$ or $\\Lambda$ then $R(P, Q_n) \\geq n +\\frac{1}{15} \\frac{n}{\\log n}$ . Otherwise $R(P, Q_n) \\leq n + c(P)$ for a constant $c(P)$ . This gives the first non-marginal improvement of a lower bound on poset Ramsey numbers and as a consequence gives $R(Q_2, Q_n) = n + \\Theta \\left(\\frac{n}{\\log n}\\right)$ .","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Given partially ordered sets (posets) $(P, \leq _P\!)$ and $(P^{\prime}, \leq _{P^{\prime}}\!)$ , we say that $P^{\prime}$ contains a copy of $P$ if for some injective function $f\,:\, P\rightarrow P^{\prime}$ and for any $X, Y\in P$ , $X\leq _P Y$ if and only if $f(X)\leq _{P^{\prime}} f(Y)$ . For any posets $P$ and $Q$ , the poset Ramsey number $R(P,Q)$ is the least positive integer $N$ such that no matter how the elements of an $N$ -dimensional Boolean lattice are coloured in blue and red, there is either a copy of $P$ with all blue elements or a copy of $Q$ with all red elements. We focus on a poset Ramsey number $R(P, Q_n)$ for a fixed poset $P$ and an $n$ -dimensional Boolean lattice $Q_n$ , as $n$ grows large. We show a sharp jump in behaviour of this number as a function of $n$ depending on whether or not $P$ contains a copy of either a poset $V$ , that is a poset on elements $A, B, C$ such that $B\gt C$ , $A\gt C$ , and $A$ and $B$ incomparable, or a poset $\Lambda$ , its symmetric counterpart. Specifically, we prove that if $P$ contains a copy of $V$ or $\Lambda$ then $R(P, Q_n) \geq n +\frac{1}{15} \frac{n}{\log n}$ . Otherwise $R(P, Q_n) \leq n + c(P)$ for a constant $c(P)$ . This gives the first non-marginal improvement of a lower bound on poset Ramsey numbers and as a consequence gives $R(Q_2, Q_n) = n + \Theta \left(\frac{n}{\log n}\right)$ .
偏序集拉姆齐数:大布尔格与固定偏序集的对比
给定偏序集(偏序集)$(P, \leq _P\!)$和$(P^{\prime}, \leq _{P^{\prime}}\!)$,我们说$P^{\prime}$对于某个单射函数$f\,:\, P\rightarrow P^{\prime}$和对于任意$X, Y\in P$, $X\leq _P Y$当且仅当$f(X)\leq _{P^{\prime}} f(Y)$包含一个$P$ if的副本。对于任意偏序集$P$和$Q$,偏序集拉姆齐数$R(P,Q)$是最小的正整数$N$,因此无论$N$维布尔晶格的元素如何涂成蓝色和红色,都存在一个包含所有蓝色元素的$P$副本或一个包含所有红色元素的$Q$副本。当$n$变大时,我们将重点放在固定偏序集$P$和$n$维布尔晶格$Q_n$的偏序集Ramsey数$R(P, Q_n)$上。我们展示了这个数字作为$n$函数的行为的急剧跳跃,这取决于$P$是否包含一个poset $V$的副本,即$A, B, C$元素上的poset $B\gt C$, $A\gt C$, $A$和$B$不可比较,或者poset $\Lambda$,它的对称对应。具体地说,我们证明如果$P$包含$V$或$\Lambda$的副本,则$R(P, Q_n) \geq n +\frac{1}{15} \frac{n}{\log n}$。否则$R(P, Q_n) \leq n + c(P)$表示常数$c(P)$。这给出了对偏集拉姆齐数下界的第一个非边际改进,并由此得到$R(Q_2, Q_n) = n + \Theta \left(\frac{n}{\log n}\right)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信