{"title":"On the multiplicative group generated by \\Big\\{{[\\sqrt {2}n]\\over n}~\\mid~n\\in\\mathbb{N} \\Big\\}. V","authors":"I. Kátai, B. M. Phong","doi":"10.7546/nntdm.2023.29.2.348-353","DOIUrl":null,"url":null,"abstract":"Let $f,g$ be completely multiplicative functions, $\\vert f(n)\\vert=\\vert g(n)\\vert =1 (n\\in\\mathbb{N})$. Assume that $${1\\over {\\log x}}\\sum_{n\\le x}{\\vert g([\\sqrt{2}n])-Cf(n)\\vert\\over n}\\to 0 \\quad (x\\to\\infty).$$ Then $$f(n)=g(n)=n^{i\\tau},\\quad C=(\\sqrt{2})^{i\\tau}, \\tau\\in \\mathbb{R}.$$","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":"111 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.348-353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $f,g$ be completely multiplicative functions, $\vert f(n)\vert=\vert g(n)\vert =1 (n\in\mathbb{N})$. Assume that $${1\over {\log x}}\sum_{n\le x}{\vert g([\sqrt{2}n])-Cf(n)\vert\over n}\to 0 \quad (x\to\infty).$$ Then $$f(n)=g(n)=n^{i\tau},\quad C=(\sqrt{2})^{i\tau}, \tau\in \mathbb{R}.$$