{"title":"A spectral bound for vertex-transitive graphs and their spanning subgraphs","authors":"Arindam Biswas, Jyoti Prakash Saha","doi":"10.5802/alco.278","DOIUrl":null,"url":null,"abstract":"For any finite, undirected, non-bipartite, vertex-transitive graph, we establish an explicit lower bound for the smallest eigenvalue of its normalised adjacency operator, which depends on the graph only through its degree and its vertex-Cheeger constant. We also prove an analogous result for a large class of irregular graphs, obtained as spanning subgraphs of vertex-transitive graphs. Using a result of Babai, we obtain a lower bound for the smallest eigenvalue of the normalised adjacency operator of a vertex-transitive graph in terms of its diameter and its degree.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
For any finite, undirected, non-bipartite, vertex-transitive graph, we establish an explicit lower bound for the smallest eigenvalue of its normalised adjacency operator, which depends on the graph only through its degree and its vertex-Cheeger constant. We also prove an analogous result for a large class of irregular graphs, obtained as spanning subgraphs of vertex-transitive graphs. Using a result of Babai, we obtain a lower bound for the smallest eigenvalue of the normalised adjacency operator of a vertex-transitive graph in terms of its diameter and its degree.