Assessing seasonal and inter‐annual marine sediment climate proxy data

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Ed Hathorne, Andrew M. Dolman, Thomas Laepple
{"title":"Assessing seasonal and inter‐annual marine sediment climate proxy data","authors":"Ed Hathorne, Andrew M. Dolman, Thomas Laepple","doi":"10.1029/2023pa004649","DOIUrl":null,"url":null,"abstract":"Abstract Three recently published papers including Napier et al. (2022, https://doi.org/10.1029/2021PA004355 ) utilize novel microanalytical approaches with varved marine sediments to demonstrate the potential to reconstruct seasonal and inter‐annual climate variability. Obtaining paleoclimate data at a resolution akin to the observational record is vitally important for improving our understanding of climate phenomena such as monsoons and modes of variability such as the El Niño Southern Oscillation, for which appraisals of past inter‐annual variability is critical. The ability to generate seasonal and inter annual resolution sea surface temperature proxy time series spanning a thousand years or more is revolutionary and has the potential to fill gaps in our knowledge of climate variability. Although generally limited to sediments from regions with oxygen depleted bottom waters, there is great potential to integrate shorter seasonal resolution climate “snap shots” from other archives such as annually banded corals into composite time series. But as paleoceanographic data are used more by the observational and modeling fields, we make the case for conducting a thorough case‐by‐case assessment of the processes that influence the climate signal recovered from proxies, using careful replication to validate new approaches. Understanding or exploring the potential influence of processes which effectively filter the climate signal will lead to more quantitative paleoceanographic data that will better serve the broader climate science community.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"2 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023pa004649","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Three recently published papers including Napier et al. (2022, https://doi.org/10.1029/2021PA004355 ) utilize novel microanalytical approaches with varved marine sediments to demonstrate the potential to reconstruct seasonal and inter‐annual climate variability. Obtaining paleoclimate data at a resolution akin to the observational record is vitally important for improving our understanding of climate phenomena such as monsoons and modes of variability such as the El Niño Southern Oscillation, for which appraisals of past inter‐annual variability is critical. The ability to generate seasonal and inter annual resolution sea surface temperature proxy time series spanning a thousand years or more is revolutionary and has the potential to fill gaps in our knowledge of climate variability. Although generally limited to sediments from regions with oxygen depleted bottom waters, there is great potential to integrate shorter seasonal resolution climate “snap shots” from other archives such as annually banded corals into composite time series. But as paleoceanographic data are used more by the observational and modeling fields, we make the case for conducting a thorough case‐by‐case assessment of the processes that influence the climate signal recovered from proxies, using careful replication to validate new approaches. Understanding or exploring the potential influence of processes which effectively filter the climate signal will lead to more quantitative paleoceanographic data that will better serve the broader climate science community.
评估季节性和年际海洋沉积物气候代用资料
最近发表的三篇论文,包括Napier等人(2022,https://doi.org/10.1029/2021PA004355),利用新颖的微分析方法对不同的海洋沉积物进行分析,证明了重建季节和年际气候变化的潜力。以类似于观测记录的分辨率获取古气候数据对于提高我们对气候现象的理解至关重要,如季风和厄尔Niño南方涛动等变率模式,对过去年际变率的评估至关重要。生成跨越一千年或更长时间的季节性和年际分辨率海面温度代理时间序列的能力是革命性的,有可能填补我们对气候变率知识的空白。虽然通常仅限于来自缺氧底水地区的沉积物,但将来自其他档案(如每年带状珊瑚)的较短季节分辨率气候“快照”整合到复合时间序列中具有很大的潜力。但是,随着观测和模拟领域越来越多地使用古海洋学数据,我们提出了对影响从代用物中恢复的气候信号的过程进行全面个案评估的理由,并使用仔细的复制来验证新方法。了解或探索有效过滤气候信号的过程的潜在影响将带来更多定量的古海洋学数据,从而更好地为更广泛的气候科学界服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信