EXISTENCE OF HOMOCLINIC ORBITS OF A CLASS OF SECOND-ORDER QUASILINEAR SCHRÖDINGER EQUATIONS WITH DELAY

IF 0.7 4区 数学 Q2 MATHEMATICS
Chengjun Guo, Baili Chen, Junming Liu, Ravi P. Agarwal
{"title":"EXISTENCE OF HOMOCLINIC ORBITS OF A CLASS OF SECOND-ORDER QUASILINEAR SCHRÖDINGER EQUATIONS WITH DELAY","authors":"Chengjun Guo, Baili Chen, Junming Liu, Ravi P. Agarwal","doi":"10.1216/rmj.2023.53.1489","DOIUrl":null,"url":null,"abstract":"We study the existence of homoclinic orbits of the second order quasilinear Schrödinger equations u¨(t)−V(t)u(t)+2[u¨(t)u2(t)+u˙2(t)u(t)]+g(t,u(t+τ),u(t),u(t−τ))=h(t). containing both advance and retardation terms. By using critical point theory and variational approaches, we establish two different existence results. The first is based on g which does not satisfy the Ambrosetti–Rabinowitz growth condition. The second is based on g satisfying the Ambrosetti–Rabinowitz growth condition.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":"2013 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.1489","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of homoclinic orbits of the second order quasilinear Schrödinger equations u¨(t)−V(t)u(t)+2[u¨(t)u2(t)+u˙2(t)u(t)]+g(t,u(t+τ),u(t),u(t−τ))=h(t). containing both advance and retardation terms. By using critical point theory and variational approaches, we establish two different existence results. The first is based on g which does not satisfy the Ambrosetti–Rabinowitz growth condition. The second is based on g satisfying the Ambrosetti–Rabinowitz growth condition.
一类二阶时滞拟线性schrÖdinger方程同斜轨道的存在性
研究了二阶拟线性Schrödinger方程u¨(t)−V(t)u(t)+2[u¨(t)u2(t)+u˙2(t)u(t)]+g(t,u(t+τ),u(t−τ),u(t))=h(t)的同斜轨道的存在性。同时包含提前和延迟条件的。利用临界点理论和变分方法,得到了两个不同的存在性结果。第一种是基于不满足Ambrosetti-Rabinowitz生长条件的g。第二种是基于g满足Ambrosetti-Rabinowitz生长条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信