J Berger, Douglas Bridges, Hannes Diener, Helmet Schwichtenberg
{"title":"Constructive aspects of Riemann’s permutation theorem for series","authors":"J Berger, Douglas Bridges, Hannes Diener, Helmet Schwichtenberg","doi":"10.1093/jigpal/jzad024","DOIUrl":null,"url":null,"abstract":"Abstract The notions of permutable and weak-permutable convergence of a series $\\sum _{n=1}^{\\infty }a_{n}$ of real numbers are introduced. Classically, these two notions are equivalent, and, by Riemann’s two main theorems on the convergence of series, a convergent series is permutably convergent if and only if it is absolutely convergent. Working within Bishop-style constructive mathematics, we prove that Ishihara’s principle BD- $\\mathbb {N}$ implies that every permutably convergent series is absolutely convergent. Since there are models of constructive mathematics in which the Riemann permutation theorem for series holds but BD- $\\mathbb{N}$ does not, the best we can hope for as a partial converse to our first theorem is that the absolute convergence of series with a permutability property classically equivalent to that of Riemann implies BD- $\\mathbb {N}$ . We show that this is the case when the property is weak-permutable convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The notions of permutable and weak-permutable convergence of a series $\sum _{n=1}^{\infty }a_{n}$ of real numbers are introduced. Classically, these two notions are equivalent, and, by Riemann’s two main theorems on the convergence of series, a convergent series is permutably convergent if and only if it is absolutely convergent. Working within Bishop-style constructive mathematics, we prove that Ishihara’s principle BD- $\mathbb {N}$ implies that every permutably convergent series is absolutely convergent. Since there are models of constructive mathematics in which the Riemann permutation theorem for series holds but BD- $\mathbb{N}$ does not, the best we can hope for as a partial converse to our first theorem is that the absolute convergence of series with a permutability property classically equivalent to that of Riemann implies BD- $\mathbb {N}$ . We show that this is the case when the property is weak-permutable convergence.