The dominating partition dimension and locating-chromatic number of graphs

IF 0.4 Q4 MATHEMATICS
Muhammad Ridwan, Hilda Assiyatun, Edy Tri Baskoro
{"title":"The dominating partition dimension and locating-chromatic number of graphs","authors":"Muhammad Ridwan, Hilda Assiyatun, Edy Tri Baskoro","doi":"10.5614/ejgta.2023.11.2.10","DOIUrl":null,"url":null,"abstract":"For every graph G , the dominating partition dimension of G is either the same as its partition dimension or one higher than its partition dimension. In this paper, we consider some general connections among these three graph parameters: partition dimension, locating-chromatic number, and dominating partition dimension. We will show that β p ( G )≤ η p ( G )≤ χ L ( G ) for any graph G with at least 3 vertices. Therefore, we will derive properties for which graphs G have η p ( G )= β p ( G ) or η p ( G )= β p ( G )+1 .","PeriodicalId":43771,"journal":{"name":"Electronic Journal of Graph Theory and Applications","volume":"58 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Graph Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ejgta.2023.11.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For every graph G , the dominating partition dimension of G is either the same as its partition dimension or one higher than its partition dimension. In this paper, we consider some general connections among these three graph parameters: partition dimension, locating-chromatic number, and dominating partition dimension. We will show that β p ( G )≤ η p ( G )≤ χ L ( G ) for any graph G with at least 3 vertices. Therefore, we will derive properties for which graphs G have η p ( G )= β p ( G ) or η p ( G )= β p ( G )+1 .
图的主要划分维数和定位色数
对于每一个图G, G的主导划分维数要么等于它的划分维数,要么比它的划分维数高一个。本文考虑了图的划分维数、定位色数和主导划分维数这三个参数之间的一般联系。我们将证明β p (G)≤η p (G)≤χ L (G)对于任何至少有3个顶点的图G。因此,我们将推导出图G具有η p (G)= β p (G)或η p (G)= β p (G)+1的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
28.60%
发文量
48
审稿时长
52 weeks
期刊介绍: We publish research articles written in English in all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信