Multiplicity-free gonality on graphs

IF 0.4 Q4 MATHEMATICS
Frances Dean, Max Everett, Ralph Morrison
{"title":"Multiplicity-free gonality on graphs","authors":"Frances Dean, Max Everett, Ralph Morrison","doi":"10.5614/ejgta.2023.11.2.2","DOIUrl":null,"url":null,"abstract":"The divisorial gonality of a graph is the minimum degree of a positive rank divisor on that graph. We introduce the multiplicity-free gonality of a graph, which restricts our consideration to divisors that place at most 1 chip on each vertex. We give a sufficient condition in terms of vertex-connectivity for these two versions of gonality to be equal; and we show that no function of gonality can bound multiplicity-free gonality, even for simple graphs. We also prove that multiplicity-free gonality is NP-hard to compute, while still determining it for graph families for which gonality is currently unknown. We also present new gonalities, such as for the wheel graphs.","PeriodicalId":43771,"journal":{"name":"Electronic Journal of Graph Theory and Applications","volume":"118 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Graph Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ejgta.2023.11.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The divisorial gonality of a graph is the minimum degree of a positive rank divisor on that graph. We introduce the multiplicity-free gonality of a graph, which restricts our consideration to divisors that place at most 1 chip on each vertex. We give a sufficient condition in terms of vertex-connectivity for these two versions of gonality to be equal; and we show that no function of gonality can bound multiplicity-free gonality, even for simple graphs. We also prove that multiplicity-free gonality is NP-hard to compute, while still determining it for graph families for which gonality is currently unknown. We also present new gonalities, such as for the wheel graphs.
图上的无多重性
图的可分性是图上一个正秩因子的最小度。我们引入了图的无多重性,这限制了我们对每个顶点上最多放置1个芯片的除法的考虑。我们从顶点连通性的角度给出了这两个版本的共向性相等的充分条件;并且证明了没有任何函数可以约束无多重性的共向性,即使对于简单图也是如此。我们还证明了无多重性的共向性是np难计算的,同时仍然确定了目前未知的图族的共向性。我们还提出了新的特性,如车轮图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
28.60%
发文量
48
审稿时长
52 weeks
期刊介绍: We publish research articles written in English in all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信