{"title":"A regression tree method for longitudinal and clustered data with multivariate responses","authors":"Wenbo Jing, Jeffrey S. Simonoff","doi":"10.1080/00949655.2023.2273966","DOIUrl":null,"url":null,"abstract":"RE-EM tree is a tree-based method that combines the regression tree and the linear mixed effects model for modeling univariate response longitudinal or clustered data. In this paper, we generalize the RE-EM tree method to multivariate response data, by adopting the Multivariate Regression Tree method proposed by De'Ath [2002]. The Multivariate RE-EM tree method estimates a population-level single tree structure that is driven by the multiple responses simultaneously and object-level random effects for each response variable, where correlation between the response variables and between the associated random effects are each allowed. Through simulation studies, we verify the advantage of the Multivariate RE-EM tree over the use of multiple univariate RE-EM trees and the Multivariate Regression Tree. We apply the Multivariate RE-EM tree to analyze a real data set that contains multidimensional nonfinancial characteristics of poverty of different countries as responses, and various potential causes of poverty as predictors.","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":"60 9","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00949655.2023.2273966","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
RE-EM tree is a tree-based method that combines the regression tree and the linear mixed effects model for modeling univariate response longitudinal or clustered data. In this paper, we generalize the RE-EM tree method to multivariate response data, by adopting the Multivariate Regression Tree method proposed by De'Ath [2002]. The Multivariate RE-EM tree method estimates a population-level single tree structure that is driven by the multiple responses simultaneously and object-level random effects for each response variable, where correlation between the response variables and between the associated random effects are each allowed. Through simulation studies, we verify the advantage of the Multivariate RE-EM tree over the use of multiple univariate RE-EM trees and the Multivariate Regression Tree. We apply the Multivariate RE-EM tree to analyze a real data set that contains multidimensional nonfinancial characteristics of poverty of different countries as responses, and various potential causes of poverty as predictors.
期刊介绍:
Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer.
Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems.
JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented.
Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.