{"title":"Stabilization in two-species chemotaxis systems with singular sensitivity and Lotka-Volterra competitive kinetics","authors":"Halil ibrahim Kurt, Wenxian Shen","doi":"10.3934/dcds.2023130","DOIUrl":null,"url":null,"abstract":"The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \\begin{equation} \\begin{cases} u_t = \\Delta u-\\chi_1 \\nabla\\cdot (\\frac{u}{w} \\nabla w)+u(a_1-b_1u-c_1v) , \\quad &x\\in \\Omega\\cr v_t = \\Delta v-\\chi_2 \\nabla\\cdot (\\frac{v}{w} \\nabla w)+v(a_2-b_2v-c_2u), \\quad &x\\in \\Omega\\cr 0 = \\Delta w-\\mu w +\\nu u+ \\lambda v, \\quad &x\\in \\Omega \\cr \\frac{\\partial u}{\\partial n} = \\frac{\\partial v}{\\partial n} = \\frac{\\partial w}{\\partial n} = 0, \\quad &x\\in\\partial\\Omega, \\end{cases} \\end{equation}~~~~(1) $ where $ \\Omega \\subset \\mathbb{R}^N $ is a bounded smooth domain, and $ \\chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \\mu, \\, \\nu, \\, \\lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\\in C^0(\\bar\\Omega) $ with $ u_0+v_0\\not \\equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \\chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \\mu, \\nu, \\lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \\frac{c_1}{b_2}<\\frac{a_1}{a_2}, \\quad \\frac{c_2}{b_1}<\\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \\frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \\quad v^* = \\frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \\quad w^* = \\frac{\\nu}{\\mu}u^*+\\frac{\\lambda}{\\mu} v^*. $ We obtain some explicit conditions on $ \\chi_1, \\chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\\in C^0(\\bar\\Omega) $ with $ u_0\\not \\equiv 0 $ and $ v_0\\not \\equiv 0 $, $ \\lim\\limits_{t\\to\\infty}\\Big(\\|u(t, \\cdot;u_0, v_0)-u^*\\|_\\infty +\\|v(t, \\cdot;u_0, v_0)-v^*\\|_\\infty+\\|w(t, \\cdot;u_0, v_0)-w^*\\|_\\infty\\Big) = 0. $","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"22 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023130","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \begin{equation} \begin{cases} u_t = \Delta u-\chi_1 \nabla\cdot (\frac{u}{w} \nabla w)+u(a_1-b_1u-c_1v) , \quad &x\in \Omega\cr v_t = \Delta v-\chi_2 \nabla\cdot (\frac{v}{w} \nabla w)+v(a_2-b_2v-c_2u), \quad &x\in \Omega\cr 0 = \Delta w-\mu w +\nu u+ \lambda v, \quad &x\in \Omega \cr \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0, \quad &x\in\partial\Omega, \end{cases} \end{equation}~~~~(1) $ where $ \Omega \subset \mathbb{R}^N $ is a bounded smooth domain, and $ \chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \mu, \, \nu, \, \lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\in C^0(\bar\Omega) $ with $ u_0+v_0\not \equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \mu, \nu, \lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \frac{c_1}{b_2}<\frac{a_1}{a_2}, \quad \frac{c_2}{b_1}<\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \quad v^* = \frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \quad w^* = \frac{\nu}{\mu}u^*+\frac{\lambda}{\mu} v^*. $ We obtain some explicit conditions on $ \chi_1, \chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\in C^0(\bar\Omega) $ with $ u_0\not \equiv 0 $ and $ v_0\not \equiv 0 $, $ \lim\limits_{t\to\infty}\Big(\|u(t, \cdot;u_0, v_0)-u^*\|_\infty +\|v(t, \cdot;u_0, v_0)-v^*\|_\infty+\|w(t, \cdot;u_0, v_0)-w^*\|_\infty\Big) = 0. $
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.