Optimization of CNC Turning Machining Parameters Based on Bp-DWMOPSO Algorithm

Jiang Li, Jiutao Zhao, Qinhui Liu, Laizheng Zhu, Jinyi Guo, Weijiu Zhang
{"title":"Optimization of CNC Turning Machining Parameters Based on Bp-DWMOPSO Algorithm","authors":"Jiang Li, Jiutao Zhao, Qinhui Liu, Laizheng Zhu, Jinyi Guo, Weijiu Zhang","doi":"10.32604/cmc.2023.042429","DOIUrl":null,"url":null,"abstract":"Cutting parameters have a significant impact on the machining effect. In order to reduce the machining time and improve the machining quality, this paper proposes an optimization algorithm based on Bp neural network-Improved Multi-Objective Particle Swarm (Bp-DWMOPSO). Firstly, this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm. Secondly, the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established. Finally, the Bp-DWMOPSO algorithm is designed based on the established models. In order to verify the effectiveness of the algorithm, this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control (CNC) turning machining case and uses the Bp-DWMOPSO algorithm for optimization. The experimental results show that the Cutting speed is 69.4 mm/min, the Feed speed is 0.05 mm/r, and the Depth of cut is 0.5 mm. The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality. This method provides a new idea for the optimization of turning machining parameters.","PeriodicalId":93535,"journal":{"name":"Computers, materials & continua","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers, materials & continua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/cmc.2023.042429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cutting parameters have a significant impact on the machining effect. In order to reduce the machining time and improve the machining quality, this paper proposes an optimization algorithm based on Bp neural network-Improved Multi-Objective Particle Swarm (Bp-DWMOPSO). Firstly, this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm. Secondly, the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established. Finally, the Bp-DWMOPSO algorithm is designed based on the established models. In order to verify the effectiveness of the algorithm, this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control (CNC) turning machining case and uses the Bp-DWMOPSO algorithm for optimization. The experimental results show that the Cutting speed is 69.4 mm/min, the Feed speed is 0.05 mm/r, and the Depth of cut is 0.5 mm. The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality. This method provides a new idea for the optimization of turning machining parameters.
基于Bp-DWMOPSO算法的数控车削加工参数优化
切削参数对加工效果有显著影响。为了缩短加工时间,提高加工质量,提出了一种基于Bp神经网络改进多目标粒子群(Bp- dwmopso)的优化算法。首先,分析了传统多目标粒子群算法存在的问题。其次,建立了Bp神经网络模型和动态加权多目标粒子群算法模型;最后,基于所建立的模型,设计了Bp-DWMOPSO算法。为了验证算法的有效性,本文在典型的CNC车削加工实例上通过等概率正交实验获得所需数据,并采用Bp-DWMOPSO算法进行优化。实验结果表明,切削速度为69.4 mm/min,进给速度为0.05 mm/r,切削深度为0.5 mm。结果表明,Bp-DWMOPSO算法能在保证加工质量的前提下,找到具有较高材料去除率和较低主轴载荷的切削参数。该方法为车削加工参数的优化提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信