{"title":"Genetic parameters and response to selection for thermal tolerance, summer survival and growth in hybrid oyster (<i>Crassostrea gigas</i> ♀ × <i>C. angulata</i> ♂)","authors":"Gaowei Jiang, Chengxun Xu, Qi Li","doi":"10.1051/alr/2023026","DOIUrl":null,"url":null,"abstract":"The Pacific oyster Crassostrea gigas is the most commonly farmed mollusks worldwide, while its production has been hindered by massive mortalities linked to high temperatures. Selective breeding focusing on thermal tolerance is an attractive option for reducing the impact of massive mortalities, but the genetic basis underlying this trait is currently unknown. Hybridization between C. gigas and C. angulata was conducted and followed by one generation of family selection for thermal tolerance. The genetic parameters for thermal resistance, summer survival and growth and selection response were investigated by using 50 full-sibling families. The mean survival of all families ranged from 30.2 to 69.5%, reflecting the large variation of thermal tolerance in the hybrid population. The estimates of heritability for thermal tolerance were low to moderate, ranging from 0.19 ± 0.03 to 0.27 ± 0.05, confirmed that there is genetic basis for thermal tolerance. The phenotypic ( r = 0.537, P < 0.01) and genetic correlations ( r = 0.546, P < 0.01) between thermal tolerance and summer survival were positive and significant, while the phenotypic and genetic correlations between growth and survival (including thermal tolerance and summer survival) were positive but low ( P > 0.05). High response to selection (Δ G = 36.33%) was observed after one generation of selection for thermal tolerance, and there was also corresponding response (Δ G = 14.46%) for summer survival. These results demonstrated that genetic selection to improve summer survival of oyster may be facilitated by selecting highly heat-tolerant lines.","PeriodicalId":55491,"journal":{"name":"Aquatic Living Resources","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Living Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/alr/2023026","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The Pacific oyster Crassostrea gigas is the most commonly farmed mollusks worldwide, while its production has been hindered by massive mortalities linked to high temperatures. Selective breeding focusing on thermal tolerance is an attractive option for reducing the impact of massive mortalities, but the genetic basis underlying this trait is currently unknown. Hybridization between C. gigas and C. angulata was conducted and followed by one generation of family selection for thermal tolerance. The genetic parameters for thermal resistance, summer survival and growth and selection response were investigated by using 50 full-sibling families. The mean survival of all families ranged from 30.2 to 69.5%, reflecting the large variation of thermal tolerance in the hybrid population. The estimates of heritability for thermal tolerance were low to moderate, ranging from 0.19 ± 0.03 to 0.27 ± 0.05, confirmed that there is genetic basis for thermal tolerance. The phenotypic ( r = 0.537, P < 0.01) and genetic correlations ( r = 0.546, P < 0.01) between thermal tolerance and summer survival were positive and significant, while the phenotypic and genetic correlations between growth and survival (including thermal tolerance and summer survival) were positive but low ( P > 0.05). High response to selection (Δ G = 36.33%) was observed after one generation of selection for thermal tolerance, and there was also corresponding response (Δ G = 14.46%) for summer survival. These results demonstrated that genetic selection to improve summer survival of oyster may be facilitated by selecting highly heat-tolerant lines.
期刊介绍:
Aquatic Living Resources publishes original research papers, review articles and propective notes dealing with all exploited (i.e. fished or farmed) living resources in marine, brackish and freshwater environments.
Priority is given to ecosystem-based approaches to the study of fishery and aquaculture social-ecological systems, including biological, ecological, economic and social dimensions.
Research on the development of interdisciplinary methods and tools which can usefully support the design, implementation and evaluation of alternative management strategies for fisheries and/or aquaculture systems at different scales is particularly welcome by the journal. This includes the exploration of scenarios and strategies for the conservation of aquatic biodiversity and research relating to the development of integrated assessment approaches aimed at ensuring sustainable and high quality uses of aquatic living resources.