{"title":"Improving resource recycling based on deep learning","authors":"Yunjian Xu, Aiyin Guo","doi":"10.3233/ais-230124","DOIUrl":null,"url":null,"abstract":"The manual sorting of recyclable garbage has caused several issues such as the wastage of human resources and low resource utilization. To solve this problem, an improved Single Shot Multibox Detector (SSD) deep learning approach has been developed for recyclable garbage detection. To reduce the number of parameters and make the model easier to deploy and apply, a lightweight network called RepVGG has been chosen to replace the VGG16 network in the SSD. Additionally, the auxiliary convolutional layer structure of the SSD has been modified to further reduce the number of parameters. Additionally, the SK module has been integrated to adaptively adjust the size of the receptive field and enhance the detection accuracy. Experimental results of Waste Classification data set from Kaggle website have demonstrated that the improved SSD model has better detection accuracy and real-time performance, with an accuracy of 95.23%, which is 4.33 percentage points higher than the original SSD, and a detection speed of up to 64 FPS. This algorithm can be better applied in industry.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"10 4","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-230124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The manual sorting of recyclable garbage has caused several issues such as the wastage of human resources and low resource utilization. To solve this problem, an improved Single Shot Multibox Detector (SSD) deep learning approach has been developed for recyclable garbage detection. To reduce the number of parameters and make the model easier to deploy and apply, a lightweight network called RepVGG has been chosen to replace the VGG16 network in the SSD. Additionally, the auxiliary convolutional layer structure of the SSD has been modified to further reduce the number of parameters. Additionally, the SK module has been integrated to adaptively adjust the size of the receptive field and enhance the detection accuracy. Experimental results of Waste Classification data set from Kaggle website have demonstrated that the improved SSD model has better detection accuracy and real-time performance, with an accuracy of 95.23%, which is 4.33 percentage points higher than the original SSD, and a detection speed of up to 64 FPS. This algorithm can be better applied in industry.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.