Bradley Gobin, Paul Reiter, Sean Whalen, Gregory Young
{"title":"Extinguishing and Combustion Characteristics of Electrically Controllable Solid Propellants Under Elevated Pressures","authors":"Bradley Gobin, Paul Reiter, Sean Whalen, Gregory Young","doi":"10.2514/1.b39189","DOIUrl":null,"url":null,"abstract":"An experimental study was conducted on electrically controllable solid propellants (ECSPs) created using a polyethylene oxide polymer binder, lithium perchlorate, and multiwalled carbon nanotubes. The propellants decompose and ignite shortly after the application of a voltage potential and extinguish when the voltage is removed under atmospheric conditions. The ignition delay as a function of the applied voltage magnitude was determined for a range of ECSP compositions. Pressurized experiments were conducted in an optically accessible strand burner to characterize the burning properties of the ECSPs as a function of pressure and electrical power. Additional experiments were conducted at elevated pressures where the voltage potential was removed and reapplied to extinguish and reignite the propellant and determine the self-extinction limits of the ECSPs. The results demonstrate that small compositional changes can drastically impact the ability to extinguish the ECSPs at elevated pressures.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"41 4","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.b39189","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
An experimental study was conducted on electrically controllable solid propellants (ECSPs) created using a polyethylene oxide polymer binder, lithium perchlorate, and multiwalled carbon nanotubes. The propellants decompose and ignite shortly after the application of a voltage potential and extinguish when the voltage is removed under atmospheric conditions. The ignition delay as a function of the applied voltage magnitude was determined for a range of ECSP compositions. Pressurized experiments were conducted in an optically accessible strand burner to characterize the burning properties of the ECSPs as a function of pressure and electrical power. Additional experiments were conducted at elevated pressures where the voltage potential was removed and reapplied to extinguish and reignite the propellant and determine the self-extinction limits of the ECSPs. The results demonstrate that small compositional changes can drastically impact the ability to extinguish the ECSPs at elevated pressures.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.