DFT, Molecular Docking, Molecular Dynamics Simulation, and Hirshfeld Surface Analysis of 2-Phenylthioaniline

IF 2.4 3区 化学 Q2 CHEMISTRY, ORGANIC
{"title":"DFT, Molecular Docking, Molecular Dynamics Simulation, and Hirshfeld Surface Analysis of 2-Phenylthioaniline","authors":"","doi":"10.1080/10406638.2023.2270128","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing NMR (<sup>1</sup>H-NMR and <sup>13</sup>C-NMR), FT-IR, UV-Visible, and quantum chemical approaches by using the DFT technique, experiments on 2-phenylthioanline were carried out. The B3LYP method and the 6-311++G(d,p) basis set were used to optimize the molecular structure and vibrational modes. The ideal binding parameters match up well with the experimental binding parameters. VEDA successfully finished the assignments concerning the distribution of potential energy. The GIAO method was used to calculate shifts in the <sup>1</sup>H-NMR and <sup>13</sup>C-NMR, and the outcomes were compared to experimental spectra. The TDDFT approach and the CPCM solvent model were used to examine electronic properties such as UV-Vis (in the gas phase, methanol, Acetone, and DCM), and the results were compared to experimental UV-Vis spectra. The HOMO/LUMO energy values provide sufficient proof of such. Molecular docking and dynamic simulations were carried out with a 2HI4 protein target and gave the best result among the three proteins.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S104066382302095X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing NMR (1H-NMR and 13C-NMR), FT-IR, UV-Visible, and quantum chemical approaches by using the DFT technique, experiments on 2-phenylthioanline were carried out. The B3LYP method and the 6-311++G(d,p) basis set were used to optimize the molecular structure and vibrational modes. The ideal binding parameters match up well with the experimental binding parameters. VEDA successfully finished the assignments concerning the distribution of potential energy. The GIAO method was used to calculate shifts in the 1H-NMR and 13C-NMR, and the outcomes were compared to experimental spectra. The TDDFT approach and the CPCM solvent model were used to examine electronic properties such as UV-Vis (in the gas phase, methanol, Acetone, and DCM), and the results were compared to experimental UV-Vis spectra. The HOMO/LUMO energy values provide sufficient proof of such. Molecular docking and dynamic simulations were carried out with a 2HI4 protein target and gave the best result among the three proteins.
2-Phenylthioaniline 的 DFT、分子对接、分子动力学模拟和 Hirshfeld 表面分析
利用核磁共振(1H-NMR 和 13C-NMR)、傅立叶变换红外光谱、紫外-可见光谱以及 DFT 技术的量子化学方法,对 2-苯基硫氨酸进行了实验。实验采用 B3LYP 方法和 6-311++G(d,p) 基集对分子结构和振动模式进行了优化。理想的结合参数与实验结合参数非常吻合。VEDA 成功地完成了有关势能分布的赋值。利用 GIAO 方法计算了 1H-NMR 和 13C-NMR 的位移,并将结果与实验光谱进行了比较。利用 TDDFT 方法和 CPCM 溶剂模型研究了 UV-Vis 等电子特性(在气相、甲醇、丙酮和 DCM 中),并将结果与实验 UV-Vis 光谱进行了比较。HOMO/LUMO 能值充分证明了这一点。以 2HI4 蛋白质为目标进行了分子对接和动态模拟,结果在三种蛋白质中最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polycyclic Aromatic Compounds
Polycyclic Aromatic Compounds 化学-有机化学
CiteScore
3.70
自引率
20.80%
发文量
412
审稿时长
3 months
期刊介绍: The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信