Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative

IF 1 Q4 ENGINEERING, BIOMEDICAL
Norliyana Nor Hisham Shah, Rashid Jan, Hassan Ahmad, Normy Norfiza Abdul Razak, Imtiaz Ahmad, Hijaz Ahmad
{"title":"Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative","authors":"Norliyana Nor Hisham Shah, Rashid Jan, Hassan Ahmad, Normy Norfiza Abdul Razak, Imtiaz Ahmad, Hijaz Ahmad","doi":"10.3934/bioeng.2023023","DOIUrl":null,"url":null,"abstract":"<abstract> <p>In this study, we formulate a mathematical model in the framework of the Atangana-Baleanu fractional derivative in Caputo sense to study the transmission of tungiasis. In this formulation, interactions between the human host and the sand fleas are taken into consideration, including factors like infestation rate, incubation duration, and recovery rate. We calculate the basic reproduction parameter for the system, symbolized by $\\mathcal{R}_0$ with the help of the next-generation matrix technique. A novel numerical scheme for encapsulating the non-local and memory-dependent aspects of the system is conceptualized via the Atangana-Baleanu fractional derivative. We prove the existence and uniqueness of the solution of the model of the infection and establish stability of the steady-states of the model. In addition to this, numerical simulations are carried out to evaluate the efficiency of interventions like campaigns for better sanitation and treatment, and to investigate the influence of various management techniques on the prevalence of tungiasis. The outcomes of the numerical simulations give us information about the possible efficacy of different control strategies in lowering the incidence of tungiasis. This research gives quantitative tools to enhance decision-making processes in public health treatments and advances our understanding of the dynamics of the tungiasis.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"23 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we formulate a mathematical model in the framework of the Atangana-Baleanu fractional derivative in Caputo sense to study the transmission of tungiasis. In this formulation, interactions between the human host and the sand fleas are taken into consideration, including factors like infestation rate, incubation duration, and recovery rate. We calculate the basic reproduction parameter for the system, symbolized by $\mathcal{R}_0$ with the help of the next-generation matrix technique. A novel numerical scheme for encapsulating the non-local and memory-dependent aspects of the system is conceptualized via the Atangana-Baleanu fractional derivative. We prove the existence and uniqueness of the solution of the model of the infection and establish stability of the steady-states of the model. In addition to this, numerical simulations are carried out to evaluate the efficiency of interventions like campaigns for better sanitation and treatment, and to investigate the influence of various management techniques on the prevalence of tungiasis. The outcomes of the numerical simulations give us information about the possible efficacy of different control strategies in lowering the incidence of tungiasis. This research gives quantitative tools to enhance decision-making processes in public health treatments and advances our understanding of the dynamics of the tungiasis.

加强对通虫病的公共卫生战略:分数阶导数的数学方法
& lt; abstract>在本研究中,我们在Caputo意义上的Atangana-Baleanu分数导数框架下建立了一个数学模型来研究tungasis的传播。在这个公式中,考虑了人类宿主与沙蚤之间的相互作用,包括侵染率、潜伏期和恢复率等因素。我们利用新一代矩阵技术计算了系统的基本再现参数,用$\mathcal{R}_0$表示。通过Atangana-Baleanu分数阶导数概念化了一种封装系统的非局部和内存依赖方面的新数值格式。我们证明了感染模型解的存在唯一性,并建立了模型稳态的稳定性。除此之外,还进行了数值模拟,以评估改善卫生和治疗运动等干预措施的效率,并调查各种管理技术对血吸虫病流行的影响。数值模拟的结果为我们提供了关于不同控制策略在降低tunigasis发病率方面可能效果的信息。这项研究为加强公共卫生治疗的决策过程提供了定量工具,并促进了我们对疟疾动态的理解。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Bioengineering
AIMS Bioengineering ENGINEERING, BIOMEDICAL-
自引率
0.00%
发文量
17
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信