Geodesics of norms on the contactomorphisms group of $${\mathbb {R}}^{2n}\times S^1$$

IF 1.4 3区 数学 Q1 MATHEMATICS
Pierre-Alexandre Arlove
{"title":"Geodesics of norms on the contactomorphisms group of $${\\mathbb {R}}^{2n}\\times S^1$$","authors":"Pierre-Alexandre Arlove","doi":"10.1007/s11784-023-01082-8","DOIUrl":null,"url":null,"abstract":"Abstract We prove that some paths of contactomorphisms of $${\\mathbb {R}}^{2n}\\times S^1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:math> endowed with its standard contact structure are geodesics for different norms defined on the identity component of the group of compactly supported contactomorphisms and its universal cover. We characterize these geodesics by giving conditions on the Hamiltonian functions that generate them. For every norm considered we show that the norm of a contactomorphism that is the time-one of such a geodesic can be expressed in terms of the maximum of the absolute value of the corresponding Hamiltonian function. In particular we recover the fact that these norms are unbounded.","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"141 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-023-01082-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove that some paths of contactomorphisms of $${\mathbb {R}}^{2n}\times S^1$$ R 2 n × S 1 endowed with its standard contact structure are geodesics for different norms defined on the identity component of the group of compactly supported contactomorphisms and its universal cover. We characterize these geodesics by giving conditions on the Hamiltonian functions that generate them. For every norm considered we show that the norm of a contactomorphism that is the time-one of such a geodesic can be expressed in terms of the maximum of the absolute value of the corresponding Hamiltonian function. In particular we recover the fact that these norms are unbounded.
的接触同构群上的模的测地线 $${\mathbb {R}}^{2n}\times S^1$$
摘要证明了具有标准接触结构的$${\mathbb {R}}^{2n}\times S^1$$ r2n × s1的一些接触形态路径是紧支撑接触形态群的恒等分量及其全称覆盖上定义的不同模的测地线。我们通过给出产生测地线的哈密顿函数的条件来描述这些测地线。对于所考虑的每一个范数,我们证明了一个接触同形的范数是这样一个测地线的时间一,它可以用相应的哈密顿函数绝对值的最大值来表示。特别是我们恢复了这些规范是无界的这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信