Large simplicial complexes: universality, randomness, and ampleness

Michael Farber
{"title":"Large simplicial complexes: universality, randomness, and ampleness","authors":"Michael Farber","doi":"10.1007/s41468-023-00134-9","DOIUrl":null,"url":null,"abstract":"Abstract The paper surveys recent progress in understanding geometric, topological and combinatorial properties of large simplicial complexes, focusing mainly on ampleness, connectivity and universality (Even-Zohar et al. in Eur J Math 8(1):1–32, 2022; Farber and Mead in Topol Appl 272(22):107065, 2020; Farber et al. in J Appl Comput Topol 5(2):339–356, 2021). In the first part of the paper we concentrate on r -ample simplicial complexes which are high dimensional analogues of the r -e.c. graphs introduced originally by Erdős and Rényi (Acta Math Acad Sci Hungar 14:295–315, 1963), see also Bonato (Contrib Discrete Math 4(1):40–53, 2009). The class of r -ample complexes is useful for applications since these complexes allow extensions of subcomplexes of certain type in all possible ways; besides, r -ample complexes exhibit remarkable robustness properties. We discuss results about the existence of r -ample complexes and describe their probabilistic and deterministic constructions. The properties of random simplicial complexes in medial regime (Farber and Mead 2020) are important for this discussion since these complexes are ample, in certain range. We prove that the topological complexity of a random simplicial complex in the medial regime satisfies $$\\textsf{TC}(X)\\le 4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>TC</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≤</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , with probability tending to 1 as $$n\\rightarrow \\infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . There exists a unique (up to isomorphism) $$\\infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>∞</mml:mi> </mml:math> -ample complex on countable set of vertexes (the Rado complex), and the second part of the paper surveys the results about universality, homogeneity, indestructibility and other important properties of this complex. The Appendix written by J.A. Barmak discusses connectivity of conic and ample complexes.","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-023-00134-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The paper surveys recent progress in understanding geometric, topological and combinatorial properties of large simplicial complexes, focusing mainly on ampleness, connectivity and universality (Even-Zohar et al. in Eur J Math 8(1):1–32, 2022; Farber and Mead in Topol Appl 272(22):107065, 2020; Farber et al. in J Appl Comput Topol 5(2):339–356, 2021). In the first part of the paper we concentrate on r -ample simplicial complexes which are high dimensional analogues of the r -e.c. graphs introduced originally by Erdős and Rényi (Acta Math Acad Sci Hungar 14:295–315, 1963), see also Bonato (Contrib Discrete Math 4(1):40–53, 2009). The class of r -ample complexes is useful for applications since these complexes allow extensions of subcomplexes of certain type in all possible ways; besides, r -ample complexes exhibit remarkable robustness properties. We discuss results about the existence of r -ample complexes and describe their probabilistic and deterministic constructions. The properties of random simplicial complexes in medial regime (Farber and Mead 2020) are important for this discussion since these complexes are ample, in certain range. We prove that the topological complexity of a random simplicial complex in the medial regime satisfies $$\textsf{TC}(X)\le 4$$ TC ( X ) 4 , with probability tending to 1 as $$n\rightarrow \infty $$ n . There exists a unique (up to isomorphism) $$\infty $$ -ample complex on countable set of vertexes (the Rado complex), and the second part of the paper surveys the results about universality, homogeneity, indestructibility and other important properties of this complex. The Appendix written by J.A. Barmak discusses connectivity of conic and ample complexes.
大型简单复合体:普遍性、随机性和丰富性
摘要本文综述了近年来在理解大型简单复合体的几何、拓扑和组合性质方面的研究进展,主要集中在丰度、连通性和普遍性方面(Even-Zohar et al. in Eur J Math 8(1):1 - 32,2022;中国生物医学工程学报,32 (2):444 - 444;Farber et al. [J] .计算机学报(英文版)5(2):339-356,2021)。在本文的第一部分,我们将重点放在r -样例简单复形上,它们是最初由Erdős和r nyi(匈牙利数学学术学报,1963年14:295-315)引入的r -e.c.图的高维类似物,也参见Bonato(贡献离散数学4(1):40 - 53,2009)。r -样本配合物类在应用中是有用的,因为这些配合物允许以所有可能的方式扩展特定类型的子配合物;此外,r -ample配合物具有显著的鲁棒性。讨论了r样本复合体存在性的结果,并描述了它们的概率和确定性结构。随机简单复合物在药物治疗中的性质(Farber and Mead 2020)对于本讨论很重要,因为这些复合物在一定范围内是丰富的。我们证明了一个随机简单复体在中间区域的拓扑复杂度满足$$\textsf{TC}(X)\le 4$$ TC (X)≤4,其概率趋于1为$$n\rightarrow \infty $$ n→∞。在可数顶点集上存在一个唯一(直至同构)$$\infty $$∞-样复数(Rado复形),本文第二部分讨论了该复形的普适性、同质性、不可破坏性等重要性质。由J.A. Barmak撰写的附录讨论了圆锥和充裕复合体的连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信