{"title":"Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings","authors":"MOLLA BASIR AHAMED, VASUDEVARAO ALLU","doi":"10.4153/s0008439523000115","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$ \\mathcal {B} $\n be the class of analytic functions \n$ f $\n in the unit disk \n$ \\mathbb {D}=\\{z\\in \\mathbb {C} : |z|<1\\} $\n such that \n$ |f(z)|<1 $\n for all \n$ z\\in \\mathbb {D} $\n . If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ \\sum _{n=0}^{\\infty }|a_nz^n|\\leq 1 $\n for \n$ |z|=r\\leq 1/3 $\n and \n$ 1/3 $\n cannot be improved. This inequality is called Bohr inequality and the quantity \n$ 1/3 $\n is called Bohr radius. If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ |\\sum _{n=0}^{N}a_nz^n|<1\\;\\; \\mbox {for}\\;\\; |z|<{1}/{2} $\n and the radius \n$ 1/2 $\n is the best possible for the class \n$ \\mathcal {B} $\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \n$ \\mathcal {H} $\n be the class of all complex-valued harmonic functions \n$ f=h+\\bar {g} $\n defined on the unit disk \n$ \\mathbb {D} $\n , where \n$ h $\n and \n$ g $\n are analytic in \n$ \\mathbb {D} $\n with the normalization \n$ h(0)=h^{\\prime }(0)-1=0 $\n and \n$ g(0)=0 $\n . Let \n$ \\mathcal {H}_0=\\{f=h+\\bar {g}\\in \\mathcal {H} : g^{\\prime }(0)=0\\}. $\n For \n$ \\alpha \\geq 0 $\n and \n$ 0\\leq \\beta <1 $\n , let \n$$ \\begin{align*} \\mathcal{W}^{0}_{\\mathcal{H}}(\\alpha, \\beta)=\\{f=h+\\overline{g}\\in\\mathcal{H}_{0} : \\mathrm{Re}\\left(h^{\\prime}(z)+\\alpha zh^{\\prime\\prime}(z)-\\beta\\right)>|g^{\\prime}(z)+\\alpha zg^{\\prime\\prime}(z)|,\\;\\; z\\in\\mathbb{D}\\} \\end{align*} $$\n be a class of close-to-convex harmonic mappings in \n$ \\mathbb {D} $\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \n$ \\mathcal {W}^{0}_{\\mathcal {H}}(\\alpha , \\beta ) $\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Let
$ \mathcal {B} $
be the class of analytic functions
$ f $
in the unit disk
$ \mathbb {D}=\{z\in \mathbb {C} : |z|<1\} $
such that
$ |f(z)|<1 $
for all
$ z\in \mathbb {D} $
. If
$ f\in \mathcal {B} $
of the form
$ f(z)=\sum _{n=0}^{\infty }a_nz^n $
, then
$ \sum _{n=0}^{\infty }|a_nz^n|\leq 1 $
for
$ |z|=r\leq 1/3 $
and
$ 1/3 $
cannot be improved. This inequality is called Bohr inequality and the quantity
$ 1/3 $
is called Bohr radius. If
$ f\in \mathcal {B} $
of the form
$ f(z)=\sum _{n=0}^{\infty }a_nz^n $
, then
$ |\sum _{n=0}^{N}a_nz^n|<1\;\; \mbox {for}\;\; |z|<{1}/{2} $
and the radius
$ 1/2 $
is the best possible for the class
$ \mathcal {B} $
. This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let
$ \mathcal {H} $
be the class of all complex-valued harmonic functions
$ f=h+\bar {g} $
defined on the unit disk
$ \mathbb {D} $
, where
$ h $
and
$ g $
are analytic in
$ \mathbb {D} $
with the normalization
$ h(0)=h^{\prime }(0)-1=0 $
and
$ g(0)=0 $
. Let
$ \mathcal {H}_0=\{f=h+\bar {g}\in \mathcal {H} : g^{\prime }(0)=0\}. $
For
$ \alpha \geq 0 $
and
$ 0\leq \beta <1 $
, let
$$ \begin{align*} \mathcal{W}^{0}_{\mathcal{H}}(\alpha, \beta)=\{f=h+\overline{g}\in\mathcal{H}_{0} : \mathrm{Re}\left(h^{\prime}(z)+\alpha zh^{\prime\prime}(z)-\beta\right)>|g^{\prime}(z)+\alpha zg^{\prime\prime}(z)|,\;\; z\in\mathbb{D}\} \end{align*} $$
be a class of close-to-convex harmonic mappings in
$ \mathbb {D} $
. In this paper, we prove the sharp Bohr–Rogosinski radius for the class
$ \mathcal {W}^{0}_{\mathcal {H}}(\alpha , \beta ) $
.