Lines on p-adic and real cubic surfaces

IF 0.4 4区 数学 Q4 MATHEMATICS
Rida Ait El Manssour, Yassine El Maazouz, Enis Kaya, Kemal Rose
{"title":"Lines on p-adic and real cubic surfaces","authors":"Rida Ait El Manssour,&nbsp;Yassine El Maazouz,&nbsp;Enis Kaya,&nbsp;Kemal Rose","doi":"10.1007/s12188-023-00269-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study lines on smooth cubic surfaces over the field of <i>p</i>-adic numbers, from a theoretical and computational point of view. Segre showed that the possible counts of such lines are 0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic aspects are investigated by sampling both <i>p</i>-adic and real cubic surfaces from different distributions and estimating the probability of each count.We link this to recent results on probabilistic enumerative geometry. Some experimental results on the Galois groups attached to <i>p</i>-adic cubic surfaces are also discussed.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-023-00269-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study lines on smooth cubic surfaces over the field of p-adic numbers, from a theoretical and computational point of view. Segre showed that the possible counts of such lines are 0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic aspects are investigated by sampling both p-adic and real cubic surfaces from different distributions and estimating the probability of each count.We link this to recent results on probabilistic enumerative geometry. Some experimental results on the Galois groups attached to p-adic cubic surfaces are also discussed.

Abstract Image

p进曲面和实立方曲面上的直线
我们从理论和计算的角度研究了p进数域上光滑三次曲面上的直线。Segre表明,这些线的可能计数是0、1、2、3、5、7、9、15或27。我们展示了这些计数都实现了。概率方面的研究是通过从不同的分布中采样p进面和实立方面,并估计每个计数的概率。我们将此与最近关于概率枚举几何的结果联系起来。讨论了附著在p进立方表面上的伽罗瓦群的一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信