On the Zeros of Polynomials with Restricted Coefficients

IF 0.4 Q4 MATHEMATICS
B. A. Zargar, M. H. Gulzar, M. Ali
{"title":"On the Zeros of Polynomials with Restricted Coefficients","authors":"B. A. Zargar, M. H. Gulzar, M. Ali","doi":"10.2478/amsil-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mo>∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mi>j</m:mi> </m:msub> <m:msup> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mi>j</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> P\\left( z \\right) = \\sum\\nolimits_{j = 0}^n {{a_j}{z^j}} be a polynomial of degree n such that a n ≥ a n− 1 ≥ . . . ≥ a 1 ≥ a 0 ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of P ( z ) lie in |z| ≤ 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7].","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"14 4 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let P ( z ) = j = 0 n a j z j P\left( z \right) = \sum\nolimits_{j = 0}^n {{a_j}{z^j}} be a polynomial of degree n such that a n ≥ a n− 1 ≥ . . . ≥ a 1 ≥ a 0 ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of P ( z ) lie in |z| ≤ 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7].
关于限制系数多项式的零点
摘要设P (z) =∑j = 0 n a jz j P \left (z \right) = \sum\nolimits _j = 0{^n }a_jz{{^j}{是一个n次多项式,使得a n≥a n−1≥…≥a 1≥a 0≥0。然后根据Eneström-Kakeya定理,P (z)的所有零点都在|z|≤1。这个结果已经以各种方式推广(见[1,3,4,6,7])。在本文中,我们将证明由Aziz和Zargar[1,2]和Nwaeze[7]所得到的结果的一些推广。}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信