Convergence analysis of block majorize-minimize subspace approach

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emilie Chouzenoux, Jean-Baptiste Fest
{"title":"Convergence analysis of block majorize-minimize subspace approach","authors":"Emilie Chouzenoux, Jean-Baptiste Fest","doi":"10.1007/s11590-023-02055-z","DOIUrl":null,"url":null,"abstract":"We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on $${\\mathbb {R}}^N$$ . We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle; (ii) a subspace strategy incorporating information from the past iterates; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka–Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11590-023-02055-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on $${\mathbb {R}}^N$$ . We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle; (ii) a subspace strategy incorporating information from the past iterates; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka–Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.

Abstract Image

块最大化-最小化子空间方法的收敛性分析
我们考虑在$${\mathbb {R}}^N$$上定义的可微Lipschitz梯度但不一定是凸的函数F的最小化。我们提出了一种加速梯度下降方法,该方法结合了三种策略,即(i)由最大化-最小化原则导出的变量度量;(ii)包含过去迭代信息的子空间策略;(iii)块交替更新。在F满足Kurdyka -Łojasiewicz性质的假设下,给出了由块最大化最小化子空间算法生成的序列收敛于目标函数的一个临界点的条件,并给出了其迭代的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信