On the performance of FSO communication system with WDM and MIMO structure under different turbulent atmospheric conditions

Q3 Engineering
Zeinab H. Tantawy, Mohamed B. El Mashade, Ahmed A. Emran, Abdellatif I. M. Semeia
{"title":"On the performance of FSO communication system with WDM and MIMO structure under different turbulent atmospheric conditions","authors":"Zeinab H. Tantawy, Mohamed B. El Mashade, Ahmed A. Emran, Abdellatif I. M. Semeia","doi":"10.1515/joc-2023-0099","DOIUrl":null,"url":null,"abstract":"Abstract Free space optical (FSO) communication link is highly weather dependent as the signal passes through the atmospheric channel. The main impairment is atmospheric turbulence, which introduces fading and breakdown the system performance. The performance of FSO link is evaluated in terms of attenuation and link length under different weather conditions. Taking a step further toward the improvement of FSO communication system, wavelength division multiplexing (WDM) is widely used in optical fiber in order to exploit the capacity of a fiber channel more efficiently. Additionally, multiple input multiple output (MIMO) mechanism represents one of the atmospheric mitigation techniques. Thus, integration of MIMO and WDM will provide astonishing results in FSO communication systems. This paper particularly focuses on analyzing the performance of FSO single input single output (FSO-SISO), FSO-WDM, FSO-MIMO, and FSO-WDM-MIMO systems considering different weather conditions. Performance of the different systems has also been compared in terms of received signal power, the quality factor, the bit error rate, and the maximum separation between the transmitter and the receiver for a given received signal level and for various atmospheric conditions. Our results show that increasing the transmitted power and receiver aperture diameter will improve the performance of the system under heavy fog and dense fog.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Free space optical (FSO) communication link is highly weather dependent as the signal passes through the atmospheric channel. The main impairment is atmospheric turbulence, which introduces fading and breakdown the system performance. The performance of FSO link is evaluated in terms of attenuation and link length under different weather conditions. Taking a step further toward the improvement of FSO communication system, wavelength division multiplexing (WDM) is widely used in optical fiber in order to exploit the capacity of a fiber channel more efficiently. Additionally, multiple input multiple output (MIMO) mechanism represents one of the atmospheric mitigation techniques. Thus, integration of MIMO and WDM will provide astonishing results in FSO communication systems. This paper particularly focuses on analyzing the performance of FSO single input single output (FSO-SISO), FSO-WDM, FSO-MIMO, and FSO-WDM-MIMO systems considering different weather conditions. Performance of the different systems has also been compared in terms of received signal power, the quality factor, the bit error rate, and the maximum separation between the transmitter and the receiver for a given received signal level and for various atmospheric conditions. Our results show that increasing the transmitted power and receiver aperture diameter will improve the performance of the system under heavy fog and dense fog.
不同湍流大气条件下WDM和MIMO结构的FSO通信系统性能研究
摘要自由空间光通信链路由于信号要经过大气信道,对天气的依赖性很大。大气湍流是主要的干扰因素,它会导致系统性能的衰落和破坏。从衰减和链路长度两个方面对FSO链路在不同天气条件下的性能进行了评价。为了更有效地利用光纤信道的容量,波分复用技术(WDM)在光纤中得到了广泛的应用,从而进一步提高了FSO通信系统的性能。此外,多输入多输出(MIMO)机制是大气减缓技术之一。因此,MIMO和WDM的集成将在FSO通信系统中提供惊人的结果。本文重点分析了FSO单输入单输出(FSO- siso)、FSO- wdm、FSO- mimo和FSO- wdm - mimo系统在不同天气条件下的性能。对不同系统的性能也进行了比较,包括接收信号功率、质量因子、误码率以及给定接收信号水平和各种大气条件下发射机和接收机之间的最大距离。研究结果表明,增大发射功率和接收机孔径可以提高系统在大雾和浓雾环境下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Optical Communications
Journal of Optical Communications Engineering-Electrical and Electronic Engineering
CiteScore
2.90
自引率
0.00%
发文量
86
期刊介绍: This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信