Risk Management: Anticipating and Reacting in StarCraft

Adam Amos-Binks, Bryan S. Weber
{"title":"Risk Management: Anticipating and Reacting in StarCraft","authors":"Adam Amos-Binks, Bryan S. Weber","doi":"10.1609/aiide.v19i1.27497","DOIUrl":null,"url":null,"abstract":"Managing risk with imperfect information is something humans do every day, but we have little insight into the abilities of AI agents to do so. We define two risk management strategies and perform an ability-based evaluation using StarCraft agents. Our evaluation shows that nearly all agents mitigate risks after observing them (react), and many prepare for such risks before their appearance (anticipate). For this evaluation, we apply traditional causal effect inference and causal random forest methods to explain agent behavior. The results highlight different risk management strategies among agents, others strategies that are common to agents, and overall encourage evaluating agent risk management abilities in other AI domains.","PeriodicalId":498041,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v19i1.27497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Managing risk with imperfect information is something humans do every day, but we have little insight into the abilities of AI agents to do so. We define two risk management strategies and perform an ability-based evaluation using StarCraft agents. Our evaluation shows that nearly all agents mitigate risks after observing them (react), and many prepare for such risks before their appearance (anticipate). For this evaluation, we apply traditional causal effect inference and causal random forest methods to explain agent behavior. The results highlight different risk management strategies among agents, others strategies that are common to agents, and overall encourage evaluating agent risk management abilities in other AI domains.
风险管理:《星际争霸》中的预测和反应
利用不完全信息管理风险是人类每天都在做的事情,但我们对人工智能代理在这方面的能力知之甚少。我们定义了两种风险管理策略,并使用《星际争霸》代理执行基于能力的评估。我们的评估表明,几乎所有的代理人在观察风险(反应)后减轻风险,许多代理人在风险出现之前就做好了准备(预期)。对于这种评价,我们采用传统的因果效应推理和因果随机森林方法来解释智能体的行为。结果突出了智能体之间不同的风险管理策略,以及智能体共同的其他策略,并总体上鼓励在其他人工智能领域评估智能体的风险管理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信