{"title":"Trading strategy for virtual power plant clusters based on a multi-subject game model","authors":"Ximing Wan, Xuan Wen, Bihong Tang, Qinfei Sun","doi":"10.3233/jcm-226942","DOIUrl":null,"url":null,"abstract":"With the rapid development of renewable energy and the continuous growth of new loads, VPP has become an important form of smart grid and energy internet due to its flexible and effective management of distributed energy. During the operation of Virtual power plant, there is a game relationship between the system operator and VPP, and they are in a non-complete information environment. However, most of the current game optimization modeling is under the condition of complete information, and the game model based on complete information cannot solve this problem. This article focuses on the VPP cluster trading problem based on non-complete information game theory, constructs a Bayesian game model for multiple VPPs with multiple subjects under the master-slave game framework by introducing the Bayesian concept to optimize the cluster transactions within VPPs, and verifies the effectiveness of the model through simulation experiments. The experimental results show that the multi-VPP multi-subject Bayesian game model established in the study can guarantee the privacy of each subject and effectively reduce PAR, thus ensuring the security and stability of the VPP network and reducing cost expenditures, which has practicality in actual VPP cluster transactions.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of renewable energy and the continuous growth of new loads, VPP has become an important form of smart grid and energy internet due to its flexible and effective management of distributed energy. During the operation of Virtual power plant, there is a game relationship between the system operator and VPP, and they are in a non-complete information environment. However, most of the current game optimization modeling is under the condition of complete information, and the game model based on complete information cannot solve this problem. This article focuses on the VPP cluster trading problem based on non-complete information game theory, constructs a Bayesian game model for multiple VPPs with multiple subjects under the master-slave game framework by introducing the Bayesian concept to optimize the cluster transactions within VPPs, and verifies the effectiveness of the model through simulation experiments. The experimental results show that the multi-VPP multi-subject Bayesian game model established in the study can guarantee the privacy of each subject and effectively reduce PAR, thus ensuring the security and stability of the VPP network and reducing cost expenditures, which has practicality in actual VPP cluster transactions.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.