Global caustic and phase chirality reversal of the focused vortex beam

Chaoxiang Wang, Ping Jiang, Yang Huajun, yan qin, Liu Jianing
{"title":"Global caustic and phase chirality reversal of the focused vortex beam","authors":"Chaoxiang Wang, Ping Jiang, Yang Huajun, yan qin, Liu Jianing","doi":"10.1364/josaa.503536","DOIUrl":null,"url":null,"abstract":"We predict the reversal of the phase chirality before and after the focal plane during propagation based on ray tracing. The interference patterns of a focused vortex beam (FVB) and a plane beam during propagation verify the fact of phase chirality reversal through diffraction theoretical simulations and experiments. Also, we deduce an analytical expression for the caustic based on the ray equation, which effectively represents the change of the hollow light field during propagation. Simulation and experimental results demonstrate the effectiveness of the caustic in describing the variation of the global hollow dark spot radius. Furthermore, based on the caustic results at the focal plane, we customize FVBs with the same dark spot radii but different topological charges. Our research results reveal the characteristics of the light field and phase distribution of the FVB during propagation, which will expand our understanding of the properties of the FVB and provide a reference value for applications such as chiral particle manipulation and topological charge recognition.","PeriodicalId":17413,"journal":{"name":"Journal of the Optical Society of America","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.503536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We predict the reversal of the phase chirality before and after the focal plane during propagation based on ray tracing. The interference patterns of a focused vortex beam (FVB) and a plane beam during propagation verify the fact of phase chirality reversal through diffraction theoretical simulations and experiments. Also, we deduce an analytical expression for the caustic based on the ray equation, which effectively represents the change of the hollow light field during propagation. Simulation and experimental results demonstrate the effectiveness of the caustic in describing the variation of the global hollow dark spot radius. Furthermore, based on the caustic results at the focal plane, we customize FVBs with the same dark spot radii but different topological charges. Our research results reveal the characteristics of the light field and phase distribution of the FVB during propagation, which will expand our understanding of the properties of the FVB and provide a reference value for applications such as chiral particle manipulation and topological charge recognition.
聚焦涡旋光束的全局焦性和相位手性反转
我们基于光线追迹预测了焦平面前后的相位手性反转。通过衍射理论模拟和实验,研究了聚焦涡旋光束与平面光束在传播过程中的干涉图样,验证了相手性反转的事实。同时,基于射线方程推导出焦散度的解析表达式,有效地表达了空心光场在传播过程中的变化。仿真和实验结果表明,碱散函数在描述全局空心黑斑半径变化方面是有效的。此外,基于焦平面的焦散性结果,我们定制了具有相同黑斑半径但不同拓扑电荷的FVBs。我们的研究结果揭示了FVB在传播过程中的光场和相位分布特征,这将扩大我们对FVB性质的认识,并为手性粒子操纵和拓扑电荷识别等应用提供参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: OSA was published by The Optical Society from January 1917 to December 1983 before dividing into JOSA A: Optics and Image Science and JOSA B: Optical Physics in 1984.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信