Feature level fusion for land cover classification with landsat images: A hybrid classification model

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Malige Gangappa
{"title":"Feature level fusion for land cover classification with landsat images: A hybrid classification model","authors":"Malige Gangappa","doi":"10.3233/mgs-230034","DOIUrl":null,"url":null,"abstract":"Classification of land cover using satellite images was a major area for the past few years. A raise in the quantity of data obtained by satellite image systems insists on the requirement for an automated tool for classification. Satellite images demonstrate temporal or/and spatial dependencies, where the traditional artificial intelligence approaches do not succeed to execute well. Hence, the suggested approach utilizes a brand-new framework for classifying land cover Histogram Linearisation is first carried out throughout pre-processing. The features are then retrieved, including spectral and spatial features. Additionally, the generated features are merged throughout the feature fusion process. Finally, at the classification phase, an optimized Long Short-Term Memory (LSTM) and Deep Belief Network (DBN) are introduced that portrays classified results in a precise way. Especially, the Opposition Behavior Learning based Water Wave Optimization (OBL-WWO) model is used for tuning the weights of LSTM and DBN. Atlast, many metrics illustrate the new approach’s effectiveness.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-230034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Classification of land cover using satellite images was a major area for the past few years. A raise in the quantity of data obtained by satellite image systems insists on the requirement for an automated tool for classification. Satellite images demonstrate temporal or/and spatial dependencies, where the traditional artificial intelligence approaches do not succeed to execute well. Hence, the suggested approach utilizes a brand-new framework for classifying land cover Histogram Linearisation is first carried out throughout pre-processing. The features are then retrieved, including spectral and spatial features. Additionally, the generated features are merged throughout the feature fusion process. Finally, at the classification phase, an optimized Long Short-Term Memory (LSTM) and Deep Belief Network (DBN) are introduced that portrays classified results in a precise way. Especially, the Opposition Behavior Learning based Water Wave Optimization (OBL-WWO) model is used for tuning the weights of LSTM and DBN. Atlast, many metrics illustrate the new approach’s effectiveness.
基于陆地卫星影像的土地覆盖分类特征级融合:一种混合分类模型
利用卫星图像对土地覆盖进行分类是过去几年的一个主要领域。卫星图像系统获得的数据量的增加,要求有一种自动分类工具。卫星图像显示了时间或/和空间依赖性,传统的人工智能方法无法很好地执行。因此,建议的方法利用了一个全新的框架来分类土地覆盖直方图,在预处理过程中首先进行线性化。然后提取特征,包括光谱特征和空间特征。此外,在整个特征融合过程中合并生成的特征。最后,在分类阶段,引入了一种优化的长短期记忆(LSTM)和深度信念网络(DBN),以精确地描述分类结果。其中,基于对立行为学习的水波优化(OBL-WWO)模型用于调整LSTM和DBN的权值。最后,许多指标说明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信