{"title":"Many-body quantum state control in the presence of environmental noise","authors":"Zara Yu, Da-Wei Luo","doi":"10.26421/qic23.11-12-3","DOIUrl":null,"url":null,"abstract":"We consider the quantum state control of a multi-state system which evolves an initial state into a target state. We explicitly demonstrate the control method in an interesting case involving the transfer and rotation of a Schr\\\"{o}dinger cat state through a coupled harmonic oscillator chain at a predetermined time $T$. We use the gradient-based Krotov's method to design the time-dependent parameters of the coupled chain to find an optimal control shape that will evolve the system into a target state. We show that the prescribed quantum state control can be achieved with high fidelity, and the robustness of the control against generic environment noises is explored. Our findings will be of interest for the optimal control of a many-body open quantum system in the presence of environmental noise.","PeriodicalId":54524,"journal":{"name":"Quantum Information & Computation","volume":"45 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information & Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic23.11-12-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the quantum state control of a multi-state system which evolves an initial state into a target state. We explicitly demonstrate the control method in an interesting case involving the transfer and rotation of a Schr\"{o}dinger cat state through a coupled harmonic oscillator chain at a predetermined time $T$. We use the gradient-based Krotov's method to design the time-dependent parameters of the coupled chain to find an optimal control shape that will evolve the system into a target state. We show that the prescribed quantum state control can be achieved with high fidelity, and the robustness of the control against generic environment noises is explored. Our findings will be of interest for the optimal control of a many-body open quantum system in the presence of environmental noise.
期刊介绍:
Quantum Information & Computation provides a forum for distribution of information in all areas of quantum information processing. Original articles, survey articles, reviews, tutorials, perspectives, and correspondences are all welcome. Computer science, physics and mathematics are covered. Both theory and experiments are included. Illustrative subjects include quantum algorithms, quantum information theory, quantum complexity theory, quantum cryptology, quantum communication and measurements, proposals and experiments on the implementation of quantum computation, communications, and entanglement in all areas of science including ion traps, cavity QED, photons, nuclear magnetic resonance, and solid-state proposals.