{"title":"Single-source precursor derived high-entropy metal-carbide nanowires: Microstructure and growth evolution","authors":"Junhao Zhao, Yulei Zhang, Hui Chen, Yanqin Fu, Qing Miao, Jiachen Meng, Jiachen Li","doi":"10.26599/jac.2023.9220806","DOIUrl":null,"url":null,"abstract":"In recent years, high-entropy metal-carbides (HECs) have attracted significant attention due to their exceptional physical and chemical properties. The combination of the excellent performance exhibited by bulk HECs ceramics and the distinctive geometric characteristics has paved the way for the emergence of one-dimensional (1D) HECs as a novel material with unique development potential. Herein, we successfully fabricated a novel (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)C nanowire derived via Fe-assisted single-sourced precursor pyrolysis. Prior to the synthesis of the nanowires, the composition and microstructure of (Ti, Zr, Hf, Nb, Ta)-containing precursor (PHECs) were analyzed, and divinylbenzene (DVB) was used to accelerate the conversion process of the precursor and contribute to the formation of HECs, which also provided partial carbon source for the nanowire growth. Additionally, multi-branched, single-branched and single-branched bending nanowires were synthesized by adjusting the ratio of PHECs to DVB. The obtained single-branched (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)C nanowires possessed smooth surfaces with an average diameter of 130~150 nm and a length of several tens of micrometers, which were single-crystal structure and typically grew along [11(_)1] direction. And the growth of (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)C nanowires was in agreement with top-type vapor-liquid-solid mechanism. This work not only successfully achieved the fabrication of HECs nanowires by a catalyst-assisted polymer pyrolysis, but also provided a comprehensive analysis of the factors affecting their yield and morphology, highlighting the potential application of these attractive nano-materials.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":null,"pages":null},"PeriodicalIF":18.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/jac.2023.9220806","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, high-entropy metal-carbides (HECs) have attracted significant attention due to their exceptional physical and chemical properties. The combination of the excellent performance exhibited by bulk HECs ceramics and the distinctive geometric characteristics has paved the way for the emergence of one-dimensional (1D) HECs as a novel material with unique development potential. Herein, we successfully fabricated a novel (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C nanowire derived via Fe-assisted single-sourced precursor pyrolysis. Prior to the synthesis of the nanowires, the composition and microstructure of (Ti, Zr, Hf, Nb, Ta)-containing precursor (PHECs) were analyzed, and divinylbenzene (DVB) was used to accelerate the conversion process of the precursor and contribute to the formation of HECs, which also provided partial carbon source for the nanowire growth. Additionally, multi-branched, single-branched and single-branched bending nanowires were synthesized by adjusting the ratio of PHECs to DVB. The obtained single-branched (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C nanowires possessed smooth surfaces with an average diameter of 130~150 nm and a length of several tens of micrometers, which were single-crystal structure and typically grew along [11(_)1] direction. And the growth of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C nanowires was in agreement with top-type vapor-liquid-solid mechanism. This work not only successfully achieved the fabrication of HECs nanowires by a catalyst-assisted polymer pyrolysis, but also provided a comprehensive analysis of the factors affecting their yield and morphology, highlighting the potential application of these attractive nano-materials.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.