gTravel: Weather-Aware POI Recommendation Engine for a Group of Tourists

Rajani Trivedi, Bibudhendu Pati, Subhendu Kumar Rath
{"title":"gTravel: Weather-Aware POI Recommendation Engine for a Group of Tourists","authors":"Rajani Trivedi, Bibudhendu Pati, Subhendu Kumar Rath","doi":"10.13053/cys-27-3-4550","DOIUrl":null,"url":null,"abstract":"Weather is a big factor in tourist decisions, andcertain places or events aren’t even recommendedduring dangerously bad weather. It is difficult to providea better recommendation to a group of tourists in thesecircumstances. We propose gTravel, a weather assistantframework that predicts weather in specified pointsof interest for a group of tourists. We demonstratehow prior knowledge of climatic patterns at a POI,as well as prior insights into how visitors rank theirdestinations in a variety of weather conditions, can helpimprove choice reliability. According to our findings, therecommendations are significantly more valid, and therecommended remedy is more comfortable.","PeriodicalId":333706,"journal":{"name":"Computación Y Sistemas","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computación Y Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/cys-27-3-4550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weather is a big factor in tourist decisions, andcertain places or events aren’t even recommendedduring dangerously bad weather. It is difficult to providea better recommendation to a group of tourists in thesecircumstances. We propose gTravel, a weather assistantframework that predicts weather in specified pointsof interest for a group of tourists. We demonstratehow prior knowledge of climatic patterns at a POI,as well as prior insights into how visitors rank theirdestinations in a variety of weather conditions, can helpimprove choice reliability. According to our findings, therecommendations are significantly more valid, and therecommended remedy is more comfortable.
gTravel:为一群游客提供天气感知POI推荐引擎
天气是影响游客决定的一个重要因素,在危险的坏天气里,某些地方或活动甚至不被推荐。在这种情况下,很难向一群游客提供更好的建议。我们提出了gTravel,这是一个天气助手框架,可以为一群游客预测特定兴趣点的天气。我们展示了POI的气候模式的先验知识,以及游客如何在各种天气条件下对目的地进行排名的先验见解,可以帮助提高选择的可靠性。根据我们的研究结果,这些建议明显更有效,并且推荐的补救措施更舒适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信