Comparison of Neural Networks for Emotion Detection

Jose Angel Martinez-Navarro, Elsa Rubio-Espino, Juan Humberto Sossa-Azuela, Victor Hugo Ponce-Ponce, Heron Molina-Lozano, Luis Martin Garcia-Sebastian
{"title":"Comparison of Neural Networks for Emotion Detection","authors":"Jose Angel Martinez-Navarro, Elsa Rubio-Espino, Juan Humberto Sossa-Azuela, Victor Hugo Ponce-Ponce, Heron Molina-Lozano, Luis Martin Garcia-Sebastian","doi":"10.13053/cys-27-3-4515","DOIUrl":null,"url":null,"abstract":"This article presents the findings of a bio-inspired audio emotion-detection system and compares its performance with various neural network approaches, namely spiking neural networks, convolutional neural networks, and multilayer perceptrons. The simulation results demonstrate the effectiveness of the proposed approach in accurately detecting audio emotions. Additionally, the detection task can achieve even higher levels of precision by improving the training methods. The research utilizes the EmoDB, SAVEE, and RAVDESS databases.","PeriodicalId":333706,"journal":{"name":"Computación Y Sistemas","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computación Y Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/cys-27-3-4515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the findings of a bio-inspired audio emotion-detection system and compares its performance with various neural network approaches, namely spiking neural networks, convolutional neural networks, and multilayer perceptrons. The simulation results demonstrate the effectiveness of the proposed approach in accurately detecting audio emotions. Additionally, the detection task can achieve even higher levels of precision by improving the training methods. The research utilizes the EmoDB, SAVEE, and RAVDESS databases.
情感检测的神经网络比较
本文介绍了一种仿生音频情感检测系统的研究结果,并将其与各种神经网络方法(即尖峰神经网络、卷积神经网络和多层感知器)的性能进行了比较。仿真结果证明了该方法在准确检测音频情绪方面的有效性。此外,通过改进训练方法,检测任务可以达到更高的精度水平。本研究使用了EmoDB、SAVEE和RAVDESS数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信