{"title":"Algebras of Reduced <i>E</i>-Fountain Semigroups and the Generalized Ample Identity II","authors":"Itamar Stein","doi":"10.1142/s0219498825500914","DOIUrl":null,"url":null,"abstract":"We study the generalized right ample identity, introduced by the author in a previous paper. Let [Formula: see text] be a reduced [Formula: see text]-Fountain semigroup which satisfies the congruence condition. We can associate with [Formula: see text] a small category [Formula: see text] whose set of objects is identified with the set [Formula: see text] of idempotents and its morphisms correspond to elements of [Formula: see text]. We prove that [Formula: see text] satisfies the generalized right ample identity if and only if every element of [Formula: see text] induces a homomorphism of left [Formula: see text]-actions between certain classes of generalized Green’s relations. In this case, we interpret the associated category [Formula: see text] as a discrete form of a Peirce decomposition of the semigroup algebra. We also give some natural examples of semigroups satisfying this identity.","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500914","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the generalized right ample identity, introduced by the author in a previous paper. Let [Formula: see text] be a reduced [Formula: see text]-Fountain semigroup which satisfies the congruence condition. We can associate with [Formula: see text] a small category [Formula: see text] whose set of objects is identified with the set [Formula: see text] of idempotents and its morphisms correspond to elements of [Formula: see text]. We prove that [Formula: see text] satisfies the generalized right ample identity if and only if every element of [Formula: see text] induces a homomorphism of left [Formula: see text]-actions between certain classes of generalized Green’s relations. In this case, we interpret the associated category [Formula: see text] as a discrete form of a Peirce decomposition of the semigroup algebra. We also give some natural examples of semigroups satisfying this identity.
期刊介绍:
The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.