Algebras of Reduced E-Fountain Semigroups and the Generalized Ample Identity II

IF 0.5 3区 数学 Q3 MATHEMATICS
Itamar Stein
{"title":"Algebras of Reduced <i>E</i>-Fountain Semigroups and the Generalized Ample Identity II","authors":"Itamar Stein","doi":"10.1142/s0219498825500914","DOIUrl":null,"url":null,"abstract":"We study the generalized right ample identity, introduced by the author in a previous paper. Let [Formula: see text] be a reduced [Formula: see text]-Fountain semigroup which satisfies the congruence condition. We can associate with [Formula: see text] a small category [Formula: see text] whose set of objects is identified with the set [Formula: see text] of idempotents and its morphisms correspond to elements of [Formula: see text]. We prove that [Formula: see text] satisfies the generalized right ample identity if and only if every element of [Formula: see text] induces a homomorphism of left [Formula: see text]-actions between certain classes of generalized Green’s relations. In this case, we interpret the associated category [Formula: see text] as a discrete form of a Peirce decomposition of the semigroup algebra. We also give some natural examples of semigroups satisfying this identity.","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500914","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the generalized right ample identity, introduced by the author in a previous paper. Let [Formula: see text] be a reduced [Formula: see text]-Fountain semigroup which satisfies the congruence condition. We can associate with [Formula: see text] a small category [Formula: see text] whose set of objects is identified with the set [Formula: see text] of idempotents and its morphisms correspond to elements of [Formula: see text]. We prove that [Formula: see text] satisfies the generalized right ample identity if and only if every element of [Formula: see text] induces a homomorphism of left [Formula: see text]-actions between certain classes of generalized Green’s relations. In this case, we interpret the associated category [Formula: see text] as a discrete form of a Peirce decomposition of the semigroup algebra. We also give some natural examples of semigroups satisfying this identity.
简化e喷泉半群的代数与广义样本恒等式2
本文研究了作者在前一篇文章中提出的广义右样本恒等式。设[公式:见文]是满足同余条件的约简[公式:见文]-喷泉半群。我们可以把[公式:见文]与一个小范畴[公式:见文]联系起来,它的对象集合与幂等的集合[公式:见文]一致,它的态射对应于[公式:见文]的元素。我们证明了[公式:见文]满足广义右样本恒等式当且仅当[公式:见文]的每一个元素在广义格林关系的某些类之间诱导出一个左[公式:见文]的同态。在这种情况下,我们将相关的范畴(公式:见文本)解释为半群代数的皮尔斯分解的离散形式。我们也给出了满足这个恒等式的半群的一些自然例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信