Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations

V. N. Litvinov, N. B. Rudenko, N. N. Gracheva
{"title":"Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations","authors":"V. N. Litvinov, N. B. Rudenko, N. N. Gracheva","doi":"10.23947/2687-1653-2023-23-3-329-339","DOIUrl":null,"url":null,"abstract":"Introduction . Environmental problems arising in shallow waters and caused by both natural and man-made factors annually do significant damage to aquatic systems and coastal territories. It is possible to identify these problems in a timely manner, as well as ways to eliminate them, using modern computing systems. But earlier studies have shown that the resources of computing systems using only a central processor are not enough to solve large scientific problems, in particular, to predict major environmental accidents, assess the damage caused by them, and determine the possibilities of their elimination. For these purposes, it is proposed to use models of the computing system and decomposition of the computational domain to develop an algorithm for parallel-pipeline calculations. The research objective was to create a model of a parallel-conveyor computational process for solving a system of grid equations by a modified alternating-triangular iterative method using the decomposition of a three-dimensional uniform computational grid that takes into account technical characteristics of the equipment used for calculations. Materials and Methods . Mathematical models of the computer system and computational grid were developed. The decomposition model of the computational domain was made taking into account the characteristics of a heterogeneous system. A parallel-pipeline method for solving a system of grid equations by a modified alternating-triangular iterative method was proposed. Results. A program was written in the CUDA C language that implemented a parallel-pipeline method for solving a system of grid equations by a modified alternating-triangular iterative method. The experiments performed showed that with an increase in the number of threads, the computation time decreased, and when decomposing the computational grid, it was rational to split into fragments along coordinate z by a value not exceeding 10. The results of the experiments proved the efficiency of the developed parallel-pipeline method. Discussion and Conclusion . As a result of the research, a model of a parallel-pipeline computing process was developed using the example of one of the most time-consuming stages of solving a system of grid equations by a modified alternating-triangular iterative method. Its construction was based on decomposition models of a three-dimensional uniform computational grid, which took into account the technical characteristics of the equipment used in the calculations. This program can provide you for the acceleration of the calculation process and even loading of program flows in time. The conducted numerical experiments validated the mathematical model of decomposition of the computational domain.","PeriodicalId":13758,"journal":{"name":"International Journal of Advanced Engineering Research and Science","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23947/2687-1653-2023-23-3-329-339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction . Environmental problems arising in shallow waters and caused by both natural and man-made factors annually do significant damage to aquatic systems and coastal territories. It is possible to identify these problems in a timely manner, as well as ways to eliminate them, using modern computing systems. But earlier studies have shown that the resources of computing systems using only a central processor are not enough to solve large scientific problems, in particular, to predict major environmental accidents, assess the damage caused by them, and determine the possibilities of their elimination. For these purposes, it is proposed to use models of the computing system and decomposition of the computational domain to develop an algorithm for parallel-pipeline calculations. The research objective was to create a model of a parallel-conveyor computational process for solving a system of grid equations by a modified alternating-triangular iterative method using the decomposition of a three-dimensional uniform computational grid that takes into account technical characteristics of the equipment used for calculations. Materials and Methods . Mathematical models of the computer system and computational grid were developed. The decomposition model of the computational domain was made taking into account the characteristics of a heterogeneous system. A parallel-pipeline method for solving a system of grid equations by a modified alternating-triangular iterative method was proposed. Results. A program was written in the CUDA C language that implemented a parallel-pipeline method for solving a system of grid equations by a modified alternating-triangular iterative method. The experiments performed showed that with an increase in the number of threads, the computation time decreased, and when decomposing the computational grid, it was rational to split into fragments along coordinate z by a value not exceeding 10. The results of the experiments proved the efficiency of the developed parallel-pipeline method. Discussion and Conclusion . As a result of the research, a model of a parallel-pipeline computing process was developed using the example of one of the most time-consuming stages of solving a system of grid equations by a modified alternating-triangular iterative method. Its construction was based on decomposition models of a three-dimensional uniform computational grid, which took into account the technical characteristics of the equipment used in the calculations. This program can provide you for the acceleration of the calculation process and even loading of program flows in time. The conducted numerical experiments validated the mathematical model of decomposition of the computational domain.
求解网格方程组的并行管道计算过程模型
介绍。由自然和人为因素引起的浅水环境问题每年都对水生系统和沿海地区造成重大损害。使用现代计算系统,及时发现这些问题以及消除它们的方法是可能的。但早期的研究表明,仅使用中央处理器的计算系统的资源不足以解决大型科学问题,特别是预测重大环境事故,评估它们造成的损害,并确定消除它们的可能性。为此,提出利用计算系统的模型和计算域的分解来开发并行管道计算的算法。研究目标是在考虑到用于计算的设备的技术特性的情况下,利用三维均匀计算网格的分解,采用改进的交替三角形迭代法,建立一个求解网格方程组的平行输送机计算过程模型。材料与方法。建立了计算机系统和计算网格的数学模型。考虑异构系统的特点,建立了计算域的分解模型。提出了一种用改进的交变三角迭代法求解网格方程组的并行管道方法。结果。用CUDA C语言编写了一个程序,实现了用改进的交替三角迭代法求解网格方程组的并行流水线方法。实验表明,随着线程数的增加,计算时间减少,并且在分解计算网格时,沿着坐标z拆分为不超过10的片段是合理的。实验结果证明了该方法的有效性。讨论与结论。在此基础上,以改进的交变三角迭代法求解网格方程组最耗时的一个阶段为例,建立了并行管道计算过程模型。它的构建基于三维均匀计算网格的分解模型,考虑到计算中使用的设备的技术特性。该程序可以为您提供计算过程的加速,甚至程序流的加载时间。数值实验验证了计算域分解的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信